Where are the Galactic "PeVatrons"?

Takahiro Sudoh (須藤 貴弘)

Ohio State University JSPS Overseas Fellow

Milky Way's High-Energy Sources

Cosmic rays

- High energy particles from the sky
- Believed to be from Milky Way's sources up to PeV (10^{15} eV)
- Many source classes seem to accelerate GeV - TeV hadrons
- Mysterious : which ones can reach PeV energies ("hadronic PeVatrons")

Note : Compiled and overly simplified for visualization!

Identify cosmic PeVatrons

Magnetic fields change the direction of particles

Identify cosmic PeVatrons

- Collision between protons and gases produce gamma rays and neutrinos
- Emission is the key to identity the Milky Way's "PeVatron".

Gamma-ray sources at TeV energies

- HESS, MAGIC, VERITAS have detected more than a hundred sources in TeV gamma rays.
- Hadronic PeVatrons would produce gamma rays and neutrino with energies of $\sim 100 \text{ TeV}$

Gamma-ray sources beyond 100 TeV

- And observations are now reaching such high energies!
- some of which reaching a PeV.
- Are they hadronic PeVatrons?

• Tibet AS γ , HAWC, and LHAASO have detected photons above 100 TeV,

Neutrino sources at TeV energies

- Just a lack of sensitivity?
- (= little gamma rays and neutrinos)?

IceCube Collaboration (2020, PRL)

No Galactic neutrino sources are found by a decade of IceCube searches

Or ... PeVatrons are thin and particles escape without interacting gases

Identify cosmic PeVatrons

- Collision between protons and gases produce gamma rays and neutrinos
- Emission is the key to identity the Milky Way's "PeVatron".

Connection between CR - gamma - nu ?

Bright diffuse hadronic cosmic rays (CR) beyond 1 PeV

How to consistently understand CR, gamma rays, and neutrinos?

> Gamma-ray sources above 100 TeV (but no neutrinos!)

Understanding High-Energy Multi-Messengers

Understanding Multi Messengers

- Goal: Consistent understanding of
 - Hadronic diffuse CR flux
 - Gamma-ray sources (+ diffuse emission)
 - Neutrino non-detection (+ diffuse emission)

Cosmic-ray Sources

• Observed hadronic CR flux : $E_{CR}^2 \Phi_{CR}$

Energy-dependent CR luminosity [erg/s] : L_{CR}

Boron to Carbon data

- Event Rate Γ_{CR}
- Energy-dependent CR energy per source [erg] : $\mathscr{E}_{CR} = \frac{CR}{\Gamma_{CR}}$

Gamma-ray and neutrino sources

- CR energy per source $\mathscr{E}_{\mathrm{CR}}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources :
 - Luminosities : $\mathscr{E}_{\mathrm{CR}}/\tau_{pp}$
 - $\tau_{pp} \sim (n_{gas} \sigma_{pp} c)^{-1}$ is the energy-loss time of protons via collisions with ambient gases, which produce gamma rays and neutrinos
 - Duration of emission : $au_{
 m src}$

Gas density around/in the source

- Lifetime as a source
- $(\simeq particle confinement timescale)$

• Two key parameter : $n_{\rm gas}$ and $au_{
m src}$

Gas Density ngas

• Two key parameter : $n_{\rm gas}$ and $\tau_{\rm src}$

• Two key parameter : $n_{\rm gas}$ and $au_{
m src}$

 Upper limit from neutrino nondetection

 Upper limit from neutrino nondetection

Gas Density ngas

 Upper limit from neutrino nondetection

- LHAASO detected 12 sources above 100 TeV ("highest-energy gamma-ray sources")
- We do not know how many of them are hadronic PeVatrons
- If ALL of them are hadronic, then {n, tau} should be in the blue region

- LHAASO detected 12 sources above 100 TeV ("highest-energy gamma-ray sources")
- We do not know how many of them are hadronic PeVatrons
- If ALL of them are hadronic, then {n, tau} should be in the blue region

Gas Density ngas

- LHAASO detected 12 sources above 100 TeV ("highest-energy gamma-ray sources")
- We do not know how many of them are hadronic PeVatrons
- If ALL of them are hadronic, then {n, tau} should be in the blue region

T_{Src} Lifetime Source

Schematic Illustration If ALL highest-energy gamma-ray sources

are hadronic

Predicts < 12 detection

Gas Density ngas

- LHAASO detected 12 sources above 100 TeV
- If NONE are hadronic, {n, tau} should be below the line

- LHAASO detected 12 sources above 100 TeV
- If NONE are hadronic, {n, tau} should be below the line

Gas Density ngas

- The gas density is the average value PeV protons encounter
- The source lifetime is the timescale for which PeV protons are confined in / around the source

- Compare various observations and theoretical models
- We can also calculate diffuse gamma rays and neutrino from unresolved sources (not shown in the schematic figure)

- Key Points:
- Demand consistency with diffuse and source data on cosmic rays, gamma rays, and neutrinos.
- Quantify properties of PeVatrons in a semi-model-independent plane of source density and lifetime.

Population model

- We carry out Monte-Carlo simulation to obtain the existing constraints in the n - tau plane.
 - Gamma-ray / neutrino spectrum
 - Detector properties
 - Source size and spatial distribution
 - Assume $\Gamma_{CR} = SN$ rate
- Retain simple descriptions with gas densities & source lifetime

Gamma-ray implications

- Most of highest-energy gamma-ray source could be hadronic PeVatrons
- Require long lifetime and/or high gas densities

Gamma-ray implications

- A wide range of n and tau is consistent with 0% being hadronic accelerators
- Highest-energy gamma-ray sources might be irrelevant to the origin of CR hadrons.

Gamma-ray implications

- Representative models
 - SNRs in 1 cm $^{-3}$ gas
 - SNRs with dense shell
 - Molecular clouds (MC) surrounding SNRs
- Confinement time is unknown and model-dependent
 - Very optimistic values are plotted

Neutrino implications

 IceCube constraints still allow a large parameter space

Summary 1

- of CR, gamma rays, and neutrinos.
- Existing neutrino constraints are still weak
- PeVatrons.
- might be hadronic PeVatrons.
- Then, what could be those gamma-ray sources?

We introduce n - tau plane to consistently understand measurements

Optimistic models : highest-energy gamma-ray sources are hadronic

A wide range of models : none of highest-energy gamma-ray sources

What are the nature of gamma-ray sources?

Two Gamma-Ray Production Mechanisms

- Hadronic : Protons collide with gases to make gamma rays and neutrinos
- Leptonic : Electrons scatter ambient photons to make gamma rays

Young pulsars as e+- accelerator

- Gamma rays now seen above 1 PeV !

Amato & Olmi (2021) Left : National Radio Astronomy Observatory (M. Bietenholz, T. Burchell, B. Schoening) Right : Chandra X-ray Observatory (F.Seward et al.)

Crab Nebula (1000 yr old): Multi-wavelength emission by electrons

Indicates the production of > PeV electrons — a leptonic "PeVatron"

О

PSR B0656+14

Middle-aged pulsars are efficiently producing > 50 TeV electrons

Recently, largely extended emission of TeV gamma rays are discovered

Geminga

ο

HAWC Collaboration Image : John Pretz

Millisecond pulsars as e+- accelerator

- "Normal" Pulsars : formed at corecollapse and spin down over ~ kyr
- Millisecond Pulsars (MSPs) : formed in binary and spin down over ~ Gyr
- Recent data suggest MSPs can produce e+- efficiently.
- They can be important in understanding nonthermal emission from old galaxies.

Sudoh, Linden, Beacom (2021, PRD)

Tauris & van den Heuvel (2006), slightly modified Gautam et al. (2022, Nature Astronomy)

Pulsars fit 100 TeV gamma-ray data

which can radiate gamma rays by scattering ambient photons.

young energetic pulsars.

Various types of pulsars are established as electron/positron sources,

Most of highest-energy gamma-ray sources are within 0.5 degree from

Pulsars fit 100 TeV gamma-ray data

Simple pulsar models fit spectra of three brightest sources.

Sudoh, Linden, Hooper (2021, JCAP)

Suggest dominance of pulsars in the highest-energy gamma-ray sky

Implications for cosmic rays

- Contributions from pulsars to the eflux is thought to be small.
- Positrons may be dominated by pulsars.

42

Implications for cosmic rays

- from the origin of CRs!

43

Summary 2

- The TeV gamma-ray sky might be dominated by leptonic sources originated from pulsars.
- the exact level is under debate.
- Most of gamma-ray source could be irrelevant to the observed CR!
- Then, how should we find CR sources?

They can make important contribution to the positron flux, although

How to find CR sources?

Solid idea : Neutrinos

Neutrinos are smoking-gun

- Neutrinos are produced only by hadronic sources
- A decisive way to detect hadronic PeVatron

IceCube Gen-2

Planned upgrade to the lceCube

©IceCube Collaboration

IceCube Gen-2

 Detection of neutrino sources by Gen-2 would constrain the parameter space in the green band.

IceCube Gen-2

- Non-detection by Gen-2 still allows a wide range of PeVatron models.
- Improvements in sensitivities are needed to rule out interesting scenarios. ... How?

Importance of Shower

• Normally, muon events have better sensitivities for source searches due to better angular resolution.

- In principle, shower events can work better than muons!
 - Smaller bkg, large source size, steep spectrum
 - Needs future work to improve the angular resolution

How to find CR sources?

Ambitious idea : Nearby source

Identify cosmic-ray sources

Hard to identity a source

Leptons cool fast

- Higher energy electrons cool faster = come from nearby
- We could identify that source by, e.g., anisotropy in arrival direction

At extremely high energies, only one source contributes to the observed flux

Where the CR electron spectrum ends?

- What is the energy range where only one source contributes?
- We currently work on this to see if it is within reach of future observations.
- Very preliminary; the "end" of CR electrons could be observed soon.

Beyond the end of CR electron spectrum

- At even higher energies, no electron from astro source reach the Earth
- The only contribution is from exotic scenarios, e.g., decay of dark matters
- Clean window to search for the dark-matter signals !?

Summary

- We see hadronic flux, we see sub-PeV gamma-ray sources, and we see no neutrino source — Where are Galactic PeVatrons?
- Optimistically, the highest-energy gamma-ray sources are hadronic PeVatrons that produce neutrinos, making them excellent multimessenger sources.
- Improvements in neutrinos are key to isolate these scenarios.
- of a CR source (and a unique window for DM searches).

 We point out that the origins of CRs and highest-energy gamma-ray sources might be disjoint, and there is no detectable neutrino source.

Extremely high-energy electrons could be used for the direct detection

Searches for Milky Way's sources

- Muons leave long track-like signature
- Observe muon neutrinos that interacted inside/outside the detector
- Useful for source searches due to good angular resolution (sub-degree)

https://icecube.wisc.edu/gallery

ceCube-Gen2's instrumentation volu

Searches for Milky Way's sources

- Electrons produce short-range shower of hadronic/electromagnetic
- Observe electron neutrinos that interacted inside the detector
- Spherical due to light scattering by the ice

https://icecube.wisc.edu/gallery

 $E_{\rm sh} \simeq E_{\nu}$

Showe

instrumentation

Features of gamma-ray sources

- LHAASO observed twelve gammed brightest sources are :
 - Spatially extended
 - increasingly stepping spectra

LHAASO observed twelve gamma-ray sources above 100 TeV. Three

LHAASO Collaboration (2021, Nature)

Source Size

Extended Data Table 2 | List of energetic astrophysical objects possibly associated with each LHAASO source

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age $(kyr)^a$	$L_s (\text{erg/s})^b$	Potential TeV Counterpart ^c
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	$4.5 imes 10^{38}$	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	2.8×10^{36}	HESS J1825-137, HESS J1826-130,
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	$2.0 imes 10^{36}$	2HWC J1837-065, HESS J1837-069,
	PSR J1838-0537	PSR	1.3^e	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1844-030,
						2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^g	43.1	$9.8 imes 10^{36}$	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^h	—	_	
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^i	$\sim 10 - 20^j$	_	MGRO J1908+06, HESS J1908+063,
	PSR 1907+0602	PSR	2.4	19.5	$2.8 imes 10^{36}$	ARGO J1907+0627, VER J1907+062,
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes 10^{35}$	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes 10^{36}$	2HWC J1928+177, 2HWC J1930+188,
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HESS J1930+188, VER J1930+188
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$	—	
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	—	_	
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7}_{-1.4}$ l	17.2	3.4×10^{36}	MGRO J2019+37, VER J2019+368,
	Sh 2-104	H II/YMC	$3.3 \pm 0.3^m / 4.0 \pm 0.5^n$		_	VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^o			TeV J2032+4130, ARGO J2031+4157,
	PSR 2032+4127	PSR	1.40 ± 0.08^{o}	201	$1.5 imes 10^{35}$	MGRO J2031+41, 2HWC J2031+415,
	SNR G79.8+1.2	SNR candidate	—	—	_	VER J2032+414
LHAASO J2108+5157						
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^p	$\sim 10^p$		VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^p	$\sim 10^p$	$2.2 imes 10^{37}$	

LHAASO Collaboration (2021, Nature)

