

2023/3/20 宇宙線研究所セミナー 13:00- @宇宙線研究所

Theoretical modeling of type lax SN 1181 remnant

Takatoshi Ko (M2 student at The University of Tokyo, RESCEU)

Coworkers : H. Suzuki, K. Kashiyama, T. Tanaka, H.Uchida, D. Tsuna, K. Fujisawa, A. Bamba, T. Shigeyama

1

White Dwarf

White Dwarf

$WD + WD \rightarrow Massive WD$ in dense nebula ?

4

Massive White Dwarf WD J005311

Similar Features with the predicted massive WD!

5

Massive White Dwarf WD J005311

X-ray observation of WD J005311

Oskinova+ 2020

WD J005311 is SN 1181 remnant? *Fortunately...*

- The on-sky location fits historical reports of SN 1181
- Radius and velocity of the remnant \rightarrow WD was formed ~1000 yr ago

- WD J005311 has been a leading candidate of SN 1181 remnant!
- We construct the remnant model assuming that WD J005311 is a SN 1181 remnant.
- Maybe SN Iax which left WD as remnant

Our X-ray analysis by <u>Suzuki-san</u>

鈴木寛大 san at Konan University

表 2.1: XMM での IRAS 00500+6713 の観測ログ

OBSID	観測開始日	露光量 (ks)
0841640101	2019 Jul 8	14.2
0841640201	2019 Jul 24	13.4
0872590101	2021 Jan 8	6.8
0872590201	2021 Jan 10	10.9
0872590301	2021 Jan 14	4.0
0872590401	2021 Jan 16	7.7
0872590501	2021 Jan 20	10.4
0872590601	2021 Jan 18	12.2

表 2.2: Chandra 衛星での IRAS 00500+6713 の観測ログ

OBSID	観測開始日	露光量 (ks)
23419	2021-05-12T10:02:33	27.7
24342	2021-05-17T02:54:20	14.8
24343	2021-05-14T09:24:33	27.7
24344	2021-10-21T09:03:08	38.0
24345	2021-12-15T09:55:43	20.8
25045	2021-05-17T17:30:09	14.8

Chandra observation

r = 0.77 - 1.60 arcsec $\rightarrow 0.0087 - 0.018 \text{ pc}$

comparing with photosphere radius $\sim 10^{10}$ cm This region is certainly spread

XMM observation

Unabsorbed flux (0.5-5.0 keV) : 3.5e-13 ergs/cm^2/s

Unabsorbed flux (0.5-5.0 keV) : 9.3e-13 ergs/cm^2/s

Outer modeling

• We calculate the shock evolution using self-similar solution by Chevalier+82

32:00.0

67:30:00.0

mid-infrared

1.46 pc

0.68 pc

Here we assume explosion occured at 1181 Outer modeling ~Result~

- The radius of the region $\rightarrow \left(\frac{E_{ej}}{10^{48} \, \text{erg}}\right)^{-0.5} \left(\frac{M_{ej}}{0.5 \times 10^{33} \, \text{g}}\right)^{0.167} \left(\frac{n_{\text{out}}}{0.1 \, \text{cm}^{-3}}\right)^{1/3} = 0.922.$
- Emission measure (our model) $\rightarrow \text{EM}_f = 6.6 \times 10^{54} \text{ cm}^{-3} \left(\frac{n_{\text{out}}}{0.1 \text{ cm}^{-3}}\right)^2$.

• X-ray analysis
$$\rightarrow EM = n_e n_{ion} V = 1.74 \times 10^{55} / \text{cm}^3$$

definition of EM

• From above, $n_{out} = 0.146$, n_{out} : number density of CSM E_{ej} : SN explosion energy M_{ej} : SN ejecta mass

$$\left(\frac{E_{ej}}{10^{48}\,\mathrm{erg}}\right)^{-1/2} \left(\frac{M_{ej}}{0.5 \times 10^{33}\,\mathrm{g}}\right)^{1/6} = 0.81^{+0.06}_{-0.04}.$$

Inner modeling

- We use thin shell approximation.
- EOM + energy conservation of the shell

$$\begin{split} M_{\rm sh,in} \frac{dv_{\rm sh}}{dt} &= 4\pi r_{\rm sh}^2 [p_{\rm w} - \rho_{\rm ej} (v_{\rm sh} - v_{\rm ej})^2] - \frac{GM_{\rm sh,in}M_*}{r_{\rm sh}^2},\\ &\frac{d}{dt} \left[\frac{4\pi r_{\rm sh}^3}{3} \frac{p_{\rm w}}{\gamma - 1} \right] = L_{\rm w} - p_{\rm w} \times 4\pi r_{\rm sh}^2 v_{\rm sh}, \end{split}$$

- If the observed wind is released steadily from the time of merger (1181 AD)
- \rightarrow r_inner >> 0.018 pc (X-ray analysis)

Wind started blowing recently?

- Wind is produced by the surface burning of the massive WD
- This timescale can be estimated by Kelvin-Helmholtz timescale

$$t_{KH} = \frac{GM^2}{RL} \sim 1000 \text{ years}$$
 Schwab+ 2016

• We consider the wind started blowing recently

Wind started blowing recently?

- If the wind started blowing recently
- → inner region becomes smaller
- Our model can constrain when the wind started blowing
- t_{wind} : how many years after the explosion the wind started blowing
- t_{wind} < 828 yr \checkmark

A Swift XRT Observation confirmed a point source (ID 00358336000, 26th July 2009, Evans+2014) This means that the wind should begin flowing before 2009.

20

Our modeling

By giving 5 parameters: $n_{\rm out}, E_{\rm ej}, M_{\rm ej}, \dot{M}_{\rm wind}, t_{\rm wind}$ We can solve this remnant

Outer analysis gives $n_{out} = 0.146$ & $\left(\frac{E_{ej}}{10^{48}\,\mathrm{erg}}\right)^{-1/2} \left(\frac{M_{ej}}{0.5 \times 10^{33}\,\mathrm{g}}\right)^{1/6} = 0.81^{+0.06}_{-0.04}.$

explanation of the parameter sets

- \dot{M}_{wind} : mass-loss rate from the central WD
- \rightarrow Observations have shown that it can take a variety of values.

Parameter	Explored range	Best fit range	Illustrated model	Gvaramadze et al. (2019)	Hot gas model
$L_{*}~({ m L}_{\odot})$	$10,\!000 - 200,\!000$	30,000 - 50,000	36,000	$39,810^{+20,144}_{-10,970}$	
T_* (K)	145,900 - 580,000	200,000 - 250,000	237,000	$211,000\substack{+40,000\\-23,000}$	
$\dot{M}~({ m M}_{\odot}/{ m yr})$	$7.5 imes ~ 10^{-7} - 2.5 imes ~ 10^{-6}$	$\leq 4 \times 10^{-6}$	$2.6 imes10^{-6}$	$3.5(\pm 0.6) \times 10^{-6}$	
$R_{*}~(\mathrm{R}_{\odot})$	0.04-0.22	≤ 0.2	0.155	0.15 ± 0.04	
$\mathrm{v}_\infty~\mathrm{(kms)}$	_	$\sim \!\! 15,\!000$	15,000	$16,000 \pm 1,000$	Lykou+202
Mass fractions					
$X_{ m H}$	_	_	_	_	_
$X_{ m He}$	0.017 - 0.135	< 0.4	0.017	< 0.1	≤ 0.44
$X_{ m C}$	0.0 - 0.261	≤ 0.26	0.13	0.2 ± 0.1	0.13
X_{O}	0.414 - 0.697	≤ 0.7	0.41	0.8 ± 0.1	0.39
$X_{ m Ne}$	0.011 - 0.501	< 0.5	0.44	0.01	0.04

They tried to fit the infrared spectra using CMFGEN model

Failure Example

Failure Example

Overview of our model

Compared with typical SN lax

- SN 1181 maximum luminosity is compared to Saturn
- \rightarrow absolute magnitude of M \sim -14 to -12.5 (fainter than SN Ia)
- SN 1181 left WD J005311 as remnant

What is SN lax?

- Type Iax SN \rightarrow sub-luminous Type Ia SN
- thought to leave a white dwarf as a remnant
- typical ejecta mass ~ 0.5 solar mass
- rate \rightarrow ~10% of SN Ia rate
- progenitor \rightarrow ONe WD + CO WD with super-Chandrasekhar

SN 1181 is SN lax?

- Type lax SN \rightarrow sub-luminous Type la SN
- thought to leave a white dwarf as a remnant
- typical ejecta mass ~ 0.5 solar mass
- rate \rightarrow ~10% of SM a rate
- progenitor \rightarrow ONe VD + CO WD with super-Chandrasekhar

Consistent!

 $0.3~M_\odot \lesssim M_{
m ej} \lesssim 0.7~M_\odot$

SN 1181 is SN lax?

- Type Iax SN \rightarrow sub-luminous Type Ia SN
- thought to leave a white dwarf as a remnant
- typical ejecta mass ~ 0.5 solar mass
- rate \rightarrow ~10% of SN Ia rate
- progenitor ONe WD + CO WD with super-Chandrasekhar

We humans are not especially lucky c.f., one SN Ia per a few hundred years in the Galaxy

Only one SN lax as historical SN

SN 1181 is SN lax?

- Type Iax SN \rightarrow sub-luminous Type Ia SN
- thought to leave a white dwarf as a remnant
- typical ejecta mass ~ 0.5 solar mass
- \bullet rate \rightarrow ${\sim}10\%$ of SN Ia rate
- progenitor \rightarrow ONe WD + CO WD with super-Chandrasekhar

1.2 solar mass ONe WD + 1.1 solar mass CO WD
→ SN Iax with 0.1 solar mass ejecta
(Theoretically predicted by Kashyap+2018)

Progenitor mass

- progenitor binary mass = remnant mass +ejecta mass $1.1 < M_{WD} < 1.3 M_{\odot}$ (Kashiyama +2019) $0.3 M_{\odot} \lesssim M_{\rm ej} \lesssim 0.7 M_{\odot}$ (This work)
- progenitor binary mass : $1.4 2.0 M_{\odot}$
- ONe WD + CO WD \rightarrow WD J005311 with SN 1181
- e.g., 1.1 solar mass ONe WD + 0.5 solar mass CO WD
- \rightarrow ejecta heavier than 0.1 solar mass ? (Future work)

Conclusion

- ejecta from SN 1181 : $0.3~M_{\odot} \lesssim M_{
 m ej} \lesssim 0.7~M_{\odot}$
- SN 1181 energy : $1.6 \times 10^{48} \text{ erg} \lesssim E_{\rm ej} \lesssim 2.1 \times 10^{48} \text{ erg}$
- These values are consistent with the assumption that type lax SN occurred at 1181
- \rightarrow strongly supports that WD J005311 is a SN 1181 remnant
- Fast wind started blowing recently!
- WD J005311 was formed by ONe WD + CO WD and mass of the binary system is $1.4 2.0 M_{\odot}$

Future work

- 2D simulation of ONe WD + CO WD merger
- \rightarrow ejecta mass, explosion energy, its spherical shape
- Calculating the evolution of the central WD

\rightarrow the KH timescale of the WD \rightarrow when the wind started blowing?

- XRISM X-ray observation
- →precise abundance
- Optical deep survey to find H and He in the outer region \rightarrow confirm our calculation
- 2D simulation of this total system including some instabilities