On the Pop. III binary BH mergers beyond the pair-instability mass gap

Kotaro Hijikawa (Umeda group, D2)

Ataru Tanikawa, Tomoya Kinugawa, Takashi Yoshida, Hideyuki Umeda

Introduction

BBHs detected by aLIGO and Virgo

The third observing run (O3): 2019/4—2020/3
 Catalogue, GWTC-3 (O1—O3): 2021/11

93 events 85: binary BH (BBH) 2: binary NS (BNS) 4: BH-NS 2: BH-gap typical mass ~ 30-40M₀ typical spin ~ 0 ⇔ BHs in X-ray binaries: low mass (~ 10M₀)

high spin (~ 1)

Pop. III BBH mergers

- Formation channel candidates of BBHs: Pop. I/II binaries, clusters, AGN disks, primordial BHs,...
- ▶ Pop. III binaries can also form BBHs. Binary population synthesis for Pop. III binaries ⇒ Belczynski et al. (2004), Kinguawa et al. (2014,2020) and Tanikawa et al. (2021)
- ▶ typical mass ~ 30M_☉ + 30M_☉; spin ~ 0 at *z*~0 ⇔consistent with observation
- promising candidate

2021 / 12 / 8

Pop. III BBH mergers

- Previous works: ZAMS mass range 10−O(10²)M_☉
- There is a chance that O(10³)M_☉ Pop.III stars can be born.
- ► THIS WORK: 10-1500*M*_☉
- Aims:
 - mass distribution
 - spin distribution
 - merger rate density
 - the maximum primary BH mass of BBHs with massive BHs (>100M₀)
- Furthermore, we impose restrictions on the Pop.III IMF

Fig.6 in Hirano et al. (2015)

Future observations and detectability

Pop.III star formation: z ~ 35—

Pop.III massive BBHs: $10^2 - 10^3 M_{\odot}$

third generation detector: Einstein telescope(2035—) space-borne detectors:

LISA(2034–) B-DECIGO(late 2020s) TianGO(20XX–) TianQin(天琴)(2030s) can detect BBHs up to $z \sim O(10)$

Method

Binary Population Synthesis (BPS)

What is population synthesis?

Using fitting formulae (e.g. Hurley et al. 2000) that describe stellar parameters (such as luminosity, radius, core mass, ...) as a function of time and metallicity, we can follow up a large number of stellar evolution.

We can obtain a statistical quantity, such as the event rate of SNe, chirp mass distribution of BBH merger events ...

- The fitting formulae for massive pop. III (~ $10^3 M_{\odot}$)
- number of simulated binaries: 10^6 IMF: m^1 ($10M_{\odot} < m < 1500M_{\odot}$)
- **Common envelope:** $\alpha_{CE}\lambda_{CE} = 1$

Results

Mass Distribution

The maximum primary BH mass

► $MS(1220M_{\odot})+MS(360M_{\odot}) \rightarrow BH(686M_{\odot})+BH(219M_{\odot})$

MS(>1220*M*_☉)+MS → BH+BH ??

The maximum primary BH mass

1.If ZAMS > $600M_{\odot}$, it reaches the Hayashi track (convective) during MS. 2.If a convective star fills its Roche lobe, a common envelope may occur. 3.If a MS star causes a common envelope, the binary disrupts.

Roche lobe radius ∝ orbital separation

wide enough not to fill the Roche lobe during the MS phase If fills, the binary system always coalesces

The maximum primary BH mass

low mass + high mass

• $m_{BH,s} = 45 M_{\odot} \leftarrow$ formed through pulsational pair-instability

Spin Distribution

high mass + high mass: ~ 0

Iow mass + high mass: ~ 0.75-0.8

- high+high
 - primary ~ 0
 - secondary ~ 0
- Iow+high
 - primary ~ 1
 - secondary ~ 0

 $\chi_{\rm eff} = \frac{m_{\rm BH,p}}{m_{\rm BH,p} + 45}$

$$\sim m_{\rm BH,p} = 135 - 180 M_{\odot}$$

Merger Rate Density

! our 'high mass + high mass' rate (z = 0) > upper limit !

Discussion

Dependence of IMF (single power law)

(Updated) Merger Rate Density

 $\sim \alpha = 2.8$

- R^{all}(z=0) = 2.89 Gpc⁻³ yr⁻¹
 obs.: 19.1^{+16.2}-9.0 Gpc⁻³ yr⁻¹
 ~ 15% (8–28%)
- R^{Ih}(z=0) = 0 too short merger time

Detection Rate of 'high mass + high mass'

$\sim \alpha = 2.8$

Chirp mass of high+high BBH →100—300M_☉

$$\mathcal{M}_{\rm c} = \frac{(m_{\rm BH,p} m_{\rm BH,s})^{3/5}}{(m_{\rm BH,p} + m_{\rm BH,p})^{1/5}}$$

Survey	Detection Rate [yr-1]
B-DECIGO	200.9
TianGO	200.9
Einstein telescope	126.1
TianQin(天琴)	7.9
LISA	1.1
aLIGO(O5)	0.9

Future works

- Future work:
 - double power law IMF
 - initial orbital separation distribution
 - ► α ce λ ce

Appendix

The maximum primary BH mass (more strictly)

$$t_{\rm GW} \propto a^4 m_{\rm BH,p}^{-2}$$

$$a \propto r_{\rm giant,p} \propto m_{\rm ZAMS,p}^{0.6}$$
 $m_{\rm BH,p} \propto m_{\rm ZAMS,p}$
 $(m_{\rm ZAMS,p} > 600 M_{\odot})$

 $t_{\rm GW} \propto m_{\rm ZAMS,p}^{0.4}$