On the Pop. Ill binary BH mergers beyond the pair-instability mass gap

Kotaro Hijikawa (Umeda group, D2)
Ataru Tanikawa, Tomoya Kinugawa, Takashi Yoshida, Hideyuki Umeda

Introduction

BBHs detected by aLIGO and Virgo

- The third observing run (O3): 2019/4-2020/3
- Catalogue, GWTC-3 (O1-O3): 2021/11

93 events 85: binary BH (BBH) 2: binary NS (BNS) 4: BH-NS
2: BH-gap
typical mass $\sim 30-40 \mathrm{M}$ 。
typical spin ~ 0
\Leftrightarrow BHs in X-ray binaries:
low mass ($\sim 10 M_{\circ}$) high spin (~ 1)

Pop. III BBH mergers

- Formation channel candidates of BBHs:

Pop. I/II binaries, clusters, AGN disks, primordial BHs,...

- Pop. III binaries can also form BBHs.

Binary population synthesis for Pop. III binaries \Rightarrow Belczynski et al. (2004), Kinguawa et al. $(2014,2020)$ and Tanikawa et al. (2021)

- typical mass $\sim \mathbf{3 0} M_{\odot}+30 M_{\odot}$;
spin ~ 0 at z~0
\Leftrightarrow consistent with observation
- promising candidate

Fig. 6 in Kinugawa et al. (2014)

Pop．III BBH mergers

－Previous works：ZAMS mass range $10-0\left(10^{2}\right) M_{\text {。 }}$
There is anal ${ }^{1000}$
－There is a chance that $\mathrm{O}\left(10^{3}\right) \mathrm{M}_{\odot}$ Pop．III stars can be born．
－THIS WORK：10－1500M。
－Aims：
－mass distribution
－spin distribution
－merger rate density
－the maximum primary BH mass

Fig． 6 in Hirano et al．（2015） of BBHs with massive BHs（＞100M。）
－Furthermore，we impose restrictions on the Pop．III IMF

Future observations and detectability

－Pop．III star formation：z～35－
－Pop．III massive BBHs： $\mathbf{1 0}^{\mathbf{2}}-\mathbf{1 0}^{\mathbf{3}} \mathrm{M}$ 。
－third generation detector：Einstein telescope（2035－） space－borne detectors：

LISA（2034－）
B－DECIGO（late 2020s）
TianGO（20XX－）
TianQin（天琴）（2030s） can detect BBHs up to $z \sim 0(10)$

Method

Binary Population Synthesis (BPS)

What is population synthesis?
Using fitting formulae (e.g. Hurley et al. 2000) that describe stellar parameters (such as luminosity, radius, core mass, ...) as a function of time and metallicity, we can follow up a large number of stellar evolution.

We can obtain a statistical quantity, such as the event rate of SNe, chirp mass distribution of BBH merger events ...

- The fitting formulae for massive pop. III (~10 \mathbf{M}_{\odot})
- number of simulated binaries: 10^{6} IMF: $\boldsymbol{m}^{-1}\left(10 M_{\odot}<m<1500 M_{\odot}\right)$
- Common envelope: α ce λ ce $=1$

Results

Mass Distribution

\downarrow Pop.III single stellar evolution \downarrow

The maximum primary BH mass

- MS(1220 $\left.M_{\circ}\right)+\mathrm{MS}\left(360 M_{\circ}\right) \rightarrow \mathrm{BH}\left(686 M_{\circ}\right)+\mathrm{BH}\left(219 M_{\circ}\right)$

- $\mathrm{MS}\left(>1220 \mathrm{M}_{\bullet}\right)+\mathrm{MS} \rightarrow \mathrm{BH}+\mathrm{BH}$??

The maximum primary BH mass

1. If ZAMS $\mathbf{>} \mathbf{6 0 0} \mathrm{M}_{\odot}$, it reaches the Hayashi track (convective) during MS. 2.If a convective star fills its Roche lobe, a common envelope may occur. 3.If a MS star causes a common envelope, the binary disrupts.

$$
m>600 M_{\odot}
$$

Roche lobe radius \propto orbital separation
wide enough not to fill the Roche lobe during the MS phase If fills, the binary system always coalesces

The heavier, the larger the radius \Rightarrow The heavier, the wider the orbital separation needs to be.

The maximum primary BH mass

Roche lobe (RL)

shorter orbital separation \Rightarrow shorter Roche lobe radius
common envelope
 single H star ?

fills the RL when the primary is still in the MS phase
ting star
\because Roche lobe radius \propto orbital separation
wider orbital separation \Rightarrow wider Roche lobe radius

fills the RL when the primary is in the giant phase

low mass + high mass

- $\mathrm{m}_{\mathrm{BH}, \mathrm{s}}=45 \mathrm{M}_{\mathrm{\circ}} \leftarrow$ formed through pulsational pair-instability

Spin Distribution

- high mass + high mass: ~ 0
- low mass + high mass: ~0.75-0.8

$$
\chi_{\mathrm{eff}}=\frac{m_{\mathrm{BH}, \mathrm{p}} \chi_{\mathrm{BH}, \mathrm{p}}+m_{\mathrm{BH}, \mathrm{~s}} \chi_{\mathrm{BH}, \mathrm{~s}}}{m_{\mathrm{BH}, \mathrm{p}}+m_{\mathrm{BH}, \mathrm{~s}}}
$$

$$
\vec{\chi}_{\mathrm{BH}, \mathrm{i}}=\frac{c \vec{J}_{\mathrm{BH}, \mathrm{i}}}{G m_{\mathrm{BH}, \mathrm{i}}^{2}}
$$

- high+high
- primary ~0
- secondary ~ 0
- low+high
- primary ~ 1
- secondary ~0

$$
\chi_{\mathrm{eff}}=\frac{m_{\mathrm{BH}, \mathrm{p}}}{m_{\mathrm{BH}, \mathrm{p}}+45}
$$

- $m_{\text {вн }, \mathrm{p}}=135-180$ M $_{\text {。 }}$

Merger Rate Density

! our 'high mass + high mass' rate $(z=0)>$ upper limit !

Discussion

Dependence of IMF (single power law)

high mass + high mass merger rate $(z=0)$

Pop. III ZAMS mass

Pop. III ZAMS mass

The exponent of Pop. III IMF ($\mathrm{m}^{-\alpha}$)

(Updated) Merger Rate Density

- $\alpha=2.8$
- $R^{\text {all }}(\mathrm{z}=0)=2.89 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- obs.: 19.1+16.2-9.0 Gpc $^{-3} \mathrm{yr}^{-1}$ - ~ 15\% (8-28\%)
- $\mathrm{R}^{\mathrm{ln}}(\mathrm{z}=0)=0$ too short merger time

Detection Rate of＇high mass＋high mass＇

－$\alpha=2.8$
－Chirp mass of high＋high BBH $\rightarrow 100-300 \mathrm{M}$ 。
$\mathcal{M}_{\mathrm{c}}=\frac{\left(m_{\mathrm{BH}, \mathrm{p}} m_{\mathrm{BH}, \mathrm{s}}\right)^{3 / 5}}{\left(m_{\mathrm{BH}, \mathrm{p}}+m_{\mathrm{BH}, \mathrm{p}}\right)^{1 / 5}}$

Survey

B－DECIGO

TianGO
Einstein telescope TianQin（天琴） LISA aLIGO（O5）

Detection Rate［yr－1］
200.9
200.9
126.1
7.9
1.1
0.9

Future works

- Future work:
- double power law IMF
- initial orbital separation distribution
- α ce λ ce

$\log M$

Appendix

The maximum primary BH mass (more strictly)

$$
\begin{aligned}
& t_{\mathrm{GW}} \propto a^{4} m_{\mathrm{BH}, \mathrm{p}}^{-2} \\
& a \propto r_{\mathrm{giant}, \mathrm{p}} \propto m_{\mathrm{ZAMS}, \mathrm{p}}^{0.6} \quad m_{\mathrm{BH}, \mathrm{p}} \propto m_{\mathrm{ZAMS}, \mathrm{p}} \\
& \quad\left(m_{\mathrm{ZAMS}, \mathrm{p}}>600 M_{\odot}\right) \\
& t_{\mathrm{GW}} \propto \\
& \\
& \\
& \\
& \\
& m_{\mathrm{ZAMS}, \mathrm{p}}^{0.4}
\end{aligned}
$$

