Multi-messenger Astrophysics of compact binary and core collapse

Kenta Hotokezaka (RESCEU, U of Tokyo)

Collaborators: E. Nakar (Tel Aviv), T. Piran (Hebrew), S. Nissanke (GRAPPA Amsterdam), K. Masuda (Osaka), A. T. Deller (Swinburne) G. Hallinan, K. Mooley, M. M. Kasliwal, P. Beniamini (Caltech), M. Shibata (AEI/YITP), M. Tanaka (Tohoku U.), D. Kato (Kyusyu U.), H. Nagakura (Princeton)

The first multi-messenger Astrophysics: SN 1987A

Matz et al. 1987 and Mario-Hurmy et al. 1988

This multi-messenger observation confirmed that the birth of a neutron star is responsible for a supernova. (I'll come back to this at the end of the talk)

Gravitational-wave Astronomy

Binary Black Hole (BBH) merger GW150914

The first GW detection

Binary Neutron Star (BNS) merger GW170817

The first GW & photon detection

Abbott et al. 2016

Abbott et al. 2017

Outline

- A comment on Binary Black Holes: an astrophysical implication from new LIGO/Virgo catalogue (GWTC-2)
- Binary Neutron Star: what we have learned from multimessenger observations of GW170817
- High energy (~100 MeV) neutrinos from core collapse supernovae and prospects with HyperKamiokande.

I will discuss very high energy gamma-rays from mergers in the CTA meeting next week.

Gravitational-Wave Transient Catalogue 2 (GWTC-2)

GWTC-2 contains 50 GW events detected by LIGO and Virgo since 2015 to O3a (Abbott et al 2020).

BBH merger rate: 99 +¹³⁸ -₇₀ Gpc⁻³ yr⁻¹ (2016) → 56 +⁴⁴ -₂₇ (2018) → 23.9 +^{14.9} -_{8.6} Gpc⁻³ yr⁻¹ (2020) ~ 2.4 Myr⁻¹ in the Milky Way

=> We were lucky for BBHs.

Spin distribution indicates the field binary origin

Among 46 BBH mergers, 11 mergers have a positive χ_{eff} within a 90% credible interval. On the contrary, there is no event with a clear negative χ_{eff} . (Note that there is a bias, large χ_{eff} large observable volume)

In fact, the underlying spin distribution peaks at positive $\chi_{eff.}$

(Abbott et al 2020)

Positive χ_{eff} means that the spin angular momenta and the orbital angular momentum are aligned, which is a very strong expectation of the field binary scenario.

Outline

- A comment on Binary Black Holes: an astrophysical implication from new LIGO/Virgo catalogue (GWTC-2)
- Binary Neutron Star: what we have learned from multimessenger observations of GW170817
- High energy (~100 MeV) neutrinos from core collapse supernovae and prospects with HyperKamiokande.

Neutron Star Merger

Propositions

- One of the strongest GW emitters (Hulse & Taylor 1975)
- Standard cosmic siren (Schutz 1986)
- A site of heavy nucleosynthesis (Lattimer & Schramm 1974)
- Short GRB progenitors (Eichler et al 1988)
- A laboratory of high-dense material (Flanagan & Hinderer 2008)
- Fast Radio Burst progenitors (Totani 2013)

Since GW170817

EOS=APR, M_{tot} = 2.9M_{sun}

KH + 13

Variety in merger remnants

Shibata & KH 2019

The first binary neutron star merger: GW170817

High Signal-to-noise ratio ~ 30

Abbott et al 2017

Merger rate

Gravitational wave $R_{GW} = 920^{+2220}_{-790}$ Gpc⁻³ yr⁻¹ (2018) $\longrightarrow 320^{+490}_{-240}$ (2020) We were also lucky for neutron star mergers. $= > \sim 32^{+49}_{-24}$ Myr⁻¹ the Milky-Way Galaxy Short GRBs $R_{SGRB} = 6^{+2}_{-2}$ Gpc⁻³ yr⁻¹ (before a beaming correction, Wanderman & Piran 15) $= > \sim 390^{+130}_{-130}$ (f_b⁻¹/65) Gpc⁻³ yr⁻¹ (corresponding to a half-opening angle of 10°)

RGW ~ RSGRB (corrected) suggests that all short GRBs can arise from mergers.

Galactic binary neutron stars (BNS)

 $R_{BNS} = 42^{+30}$ -10 Myr^{-1} (Pol, MclLaughlin, & Lorimer 2019), which is dominated by 5 systems, J1906+0746, B1913+16 (Hulse-Taylor), J0737-3039A/B (the double), J1757-1854, J1946+2052 (the tightest)

Follow-up observations of GW170817

Abbott et al., ApJL. 848, L12 (2017)

GW170817: GRB, Kilonova & Afterglow

GRB 170817 (X- γ) Dissipation in the outflow: L ~ 10⁴⁶ - 10⁴⁷ erg/s

Kilonova (uv-IR)

Radioactive decay: ~ 10³⁸ - 10⁴² erg/s

Afterglow (radio-X)

Kinetic energy deposited into the ISM: ~ 10³⁸ - 10⁴⁰ erg/s

Kilonova in GW170817

Arcavi+17, Coulter+17, Lipunov+17, Soares-Santos+17, Tanvir+17, Valenti+17, Kasliwal+17, Drout+17, Evans+17, Utsumi+17

Basics of Kilonovae

Li & Paczynski 1998, Kulkarni 2005, Metzger + 2010

Dynamical mass ejection

Bauswein + 13, Piran + 13, Rosswog 2013, Kyutoku+15, Sekiguchi + 15, 16, Radice+16

Dynamical ejection vs Disk outgflow

R-process nucleosynthesis in merger

© Jonus Lippuner

Kilonova Emission depends on the composition

Heating rate of r-process

Way & Wigner 1948

KH & Nakar 2020

Heating rate of r-process

Heating rate of r-process

Way & Wigner 1948

KH & Nakar 2020

Heating rate of nuclear waste

Heating rate of r-process

This is somewhat a unique properties of the heating rates of many beta-decay chains.

Observation vs theory of Kilonova

Open code: https://github.com/hotokezaka/HeatingRate

~0.05 Msun of r-process elements are required to power the kilonova GW170817.

Radioactive heat => Photon Luminosity

Barnes & Kasen 13, Kasen + 13, Tanka & KH 13, Tanaka 17, Wollaeger + 18, Tanaka+19

Expanding Ejecta

Photons are blocked by atomic transitions

Kilonova GW170817: R-process heating matches the data Open code: <u>https://github.com/hotokezaka/HeatingRate</u>

R-process mass budget from GWTC-1

Ref: Goriely 1999, Lodders et al 2009, Wanderman & Piran 2015, Fong+2015, KH, Piran, Paul 2015, Beniamini, KH, Piran 2016, Pol, McLaughlin, Lorimer 2019, KH & Nakar 2020, LVC 2020

R-process mass budget from GWTC-2

KH, Piran, Paul 15, KH, Beniamini, Piran 18

Ref: Goriely 1999, Lodders et al 2009, Wanderman & Piran 2015, Fong+2015, KH, Piran, Paul 2015, Beniamini, KH, Piran 2016, Pol, McLaughlin, Lorimer 2019, KH & Nakar 2020, LVC 2020

Sr lines in the kilonova spectrum

X-shooter spectra are explained by blackbody + Sr II lines.

Sr lines are expected to be very strong.
Heavy elements may be absent in the outer part of the ejecta.

Watson et al 19

Kilonova Emission depends on the composition

Proposed Scenarios for the GW170817 kilonvoa

Most of mass: lanthanide-rich

Kasen +17, Villar + 2017 Perego+2017

lanthanide-less

Waxman + 2017, Shibata..KH+17, Kawaguchi+18

Long lived neutron star (~100 ms)

 10^{1}

10⁰

Time since explosion [days]

0 1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16

t [day

Remnant: short lived NS => BH

Kilonova Nebula

Nebular phase:

- Most of the ejecta can be seen. (inner parts have slower velocities)
- Photon luminosity ~ heating rate
- Photons are emitted directly by radiative de-excitations.

Future Prospects of Kilonova

When the ejecta becomes optically thin, we will see atomic emission lines.

James Webb Space Telescope will be extremely powerful to get kilonova spectra!!

A Gamma-Ray Burst after GW170817

Properties of γ-rays:
1) Delay is ~1.7 sec and duration is ~2 sec.
2) Isotropic energy is ~ 10⁴⁷ erg and spectral peak is ~200 keV.

3) Off-axis short GRB => spectral peak < 10 keV (e.g. Matsumoto+18)

3. Optical depth: $\tau = \kappa M/4\pi R_{sh}^2 \sim 1$ (required)

Merger simulations show a fast ejecta tail with $\sim 0.8c$ and $10^{-7}M_{sun}$ (Kiuchi+17, KH+18) But also see loka & Nakamura 2018 for off-axis jet considerations.

Late-time Afterglow across multi-wavelength

Light curve (Makhathini+2020)

Spectrum

Hallinan+17, Margutti+17,18, Troja+17,19, Haggard+17, Ruan+17,Lyman+18,Mooley+18

Imaging the afterglow with VLBI

Two observations with the HSA (75 d and 230 d post-merger)

Superluminal Jet in GW170817

VLBI resolve the motion of the radio source Mooley...KH (2018)

1, The source moved 2.7 mas in 155 day.

$$eta_{\mathrm{app}} = 4.1 \pm 0.4$$
 .

2, The source size is unresolved.
=> the emission region does not extend much.

- Very strong evidence for a jet in GW170817
- First time to see a superluminal motion of a "GRB" jet.

t =0.00 S

© Ore Gottlieb & Ehud Nakar

Jet Parameters 100 Internergy (keV)

1000

We would have seen a strong GRB if we were on-axis.
I'll talk about implications of these to CTA science in a meeting next week.

GW + light curve + VLBI => H0

Outline

- A comment on Binary Black Holes: an astrophysical implication from new LIGO/Virgo catalogue (GWTC-2)
- Binary Neutron Star: what we have learned from multimessenger observations of GW170817
- High energy (~100 MeV) neutrinos from core collapse supernovae and prospects with HyperKamiokande.

Looking forward to a Galactic supernova

Nagakura & KH 2020

Astrophysicists' dream is to get the $v_e v_\mu v_\tau$ spectra from a supernova.

(their antiparticles as well)

But it is widely accepted that obtaining $v_{\mu} v_{\tau}$ and their anti-v spectra from a supernova is very hard because they do not have enough energy to induce charged current interactions.

A question: Is this true even if we have 10⁵ v_e type neutrinos?

Looking forward to a Galactic supernova

Nagakura & KH 2020

Supernova $v_{\mu} v_{\tau}$ and their anti-v do not have enough energy to induce charged current interactions. Is this really true?

They need to be v_{μ} with E>100MeV and v_{τ} with E> 2GeV

Supernova $v_{\mu} v_{\tau}$ have quasi-thermal spectra with T ~ 5MeV.

- v_{τ} is impossible to induce CC interactions.
- v_{μ} also seems to be impossible with a quasi-thermal spectrum.

Now the question we ask is "Are v_{μ} and v_{τ} always quasi-thermal during core collapse?"

Nagakura & KH 2020

When the supernova shock is ~ 100km, the collisional mean free path of v_x is O(100km). In such a situation, some of them cross the shock multiple times and then escape (first order Fermi Acceleration), which has been known since Kanzas & Ellison 81. => An observer can see accelerated neutrinos.

This acceleration occurs as long as the shock's optical depth ~ 1.

Note that v_e do not accelerate because CC interactions destroy them.

Nagakura & KH 2020

Are v_{μ} and v_{τ} always quasi-thermal during core collapse? No.

- Mu and tau have a significant non-thermal tail $\sim E > 50 MeV$.
- The degeneracy between mu and tau is broken because CC interactions kick in at 100 MeV.

Nagakura & KH 2020

Case 1. Early post bounce ~ 10 - 30 ms

Nagakura & KH 2020

Observability: charged current interactions occur for Mu? Nagakura & KH 2020 120 140 180

0.1

Energy [MeV]

120

- HyperK will see neutrinos with E>80MeV in the first 50ms.
- This will be a clear signature that the shock is propagating in the scattering atmosphere ~ 100 km.
- These v_e must originate from v_x at the source.

Summary

- BBH spin distribution points to that field binaries are their dominant progenitors.
- The BNS merger rate is now just the one expected, ~30/Myr in the Milky Way.
- Kilonovae are optical-nIR emission of neutron star merger ejecta. Its heating rate ~ t^{-1.3} (early) and t^{-2.8} (late).
- The GW170817 light curve agrees with the r-process heating. It requires 0.05 Msun of r-process elements produced in GW170817.
- The estimated rate and mass of r-process elements from GW170817 are consistent with that all r-process elements are produced by mergers.
- GRB 170817A and its afterglow point to this merger launched a relativistic jet.
- The VLBI measurement of the superluminal motion of the jet in GW170817 provides the Lorentz factor, total energy, and viewing angle.
- The VLBI measurement can be used to improve the H0 measurement, ~ 68+5-5 km/s/Mpc
- Mu and tau neutrino acceleration in supernovae occurs when the shock propagates in the scattering atmosphere. This produces high energy tail (~100 MeV) in the neutrino spectra and breaks the degeneracy between mu and tau. Hyper-Kamiokande will be very powerful to see these signatures.

Thank you !!!

Picture after GW170817

Tidal tail

Hypermassive neutron star (HMNS) Lifetime ~ 10 ms-1s

Black Hole + disk

M ~ 0.01M_{sun} v~0.1-0.3c M ~ 0.05M_{sun} v~0.05-0.1c

Outline

- Introduction
- Neutron Star Merger simulation
- R-process Kilonova
- Afterglow Jet
- Origin of binary black hole mergers