Electromagnetic Radiations From Binary Black Holes

Shigeo S. Kimura

Center for Particle Astrophys. PSU (IGC Fellow) Dept. Astronomy & Astrophys., PSU Dept. Physics, PSU

ref) SSK, S. Z. Takahashi, & K. Toma, 2017, MNRAS, 465, 4406 SSK, K. Murase, P. Meszaros in prep.

Collaborators Kenji Toma, Sanemichi Takahashi (Tohoku Univ.) Kohta Murase, Peter Meszaros (PSU)

Outline

- Introduction
- sub-Energetic Supernovae from Newborn BBHs
- Evolution of Accretion Disks in BBHs
- Summary

Outline

Introduction

- sub-Energetic Supernovae from Newborn BBH
- Evolution of Accretion Disks in BBHs
- Summary

Detection of GWs

- LIGO collaboration detected the gravitational waves from merging black holes (BHs)
- Revealing existence of BH-BH binaries of $M_{BH} \sim 30 M_{sun}$

Formation scenarios

Formation scenarios

Accretion onto BHs

- Gravitational energy
 —> Radiation energy
- Angular momentum
 —> Accretion disk
- Angular momentum transport is necessary for continuous accretion
 - MHD turbulence made by magnetorotational instability
 (MRI) Balbus & Hawley 91
- Accretion may take place when BBHs are born and/or merging

Suzuki & Inutsuka 14

Outline

- Introduction
- sub-Energetic Supernovae from Newborn BBH
- Evolution of Accretion Disks in BBHs
- Summary

Binary Evolution scenario

Kinugawa+14, Belczynski+16

- massive star binary
 —> Binary Black Hole
 - First, Primary -> BH
 - Secondary becomes giant —>Common envelope
- Ejection of CE
 —> close BH-WR binary
- WR collapses to BH —> BBH formation
- Direct Collapse
 = Failed Supernovae

Failed Supernovae

- ProtoNeutron Star forms when massive star collapses
- Neutrino loss —> Binding energy decrease —> shock propagation —> envelope ejection ~ 0.01M_{sun}

Bondi-Hoyle Accretion

Radiation-driven Outflow

- Accreted material forms a disk
- super-Eddington accretion rate —> A radiation-driven outflow

/en SNe

ssumption: Spherical Symmetric Homologas expansion

 $\frac{3m_{\rm ej}}{4\pi a^3} \left(\frac{t}{t_{\rm arr}}\right)^{-3} \quad v_a = a/t.$

EoM $\frac{dE_{\rm kin}}{dt} = \frac{E_{\rm int}}{t_{\rm dyn}}, \quad \frac{dR_{\rm ej}}{dt} = v_{\rm ej}.$

Energy eq.

$$\frac{dE_{\rm int}}{dt} = f_i L_w - \frac{E_{\rm int}}{t_{\rm dyn}} - L_{\rm ph},$$

$$L_{\rm ph} = \frac{\epsilon_{\rm rad} E_{\rm int}}{t_{\rm ph}} = \frac{E_{\rm int}}{(1 + \tau_{\rm ej}) R_{\rm ej}/c}$$

$$\dot{M}_{\rm B-H} \approx 4\pi R_{\rm acc}^2 \rho_{\rm ej,m} \sqrt{v_a^2 + v_{\rm orb}^2}$$

• Radiation-driven outflow pushes the ejecta -> sub-energetic supernova $E_w \sim 1.4 \times 10^{49}$ erg

Time Evolution

SSK+ in prep.

- Duration: a few days
- Temperature: $10^4 10^5 \text{ K}$

Light Curve

- Event rate: similar to LIGO ~ 10–100 Gpc⁻³ yr⁻¹
 - -> expected distance ~300 Mpc
 - ->~22 mag. @ 300 Mpc
 - -> detectable by Current optical transient survey

Caveat

- Spherical symmetric treatment is not accurate
 a) Effect of the outflow on ejecta
 b) Finite binary separation
- To investigate these effect, we need 3D (radiation) hydrodynamic simulation with feedback of outflows from the BH, which might be similar to the galaxy formation simulation with AGN feedback.

Short Summary I

- Accretion of ejecta onto primary BH produces a energetic outflows, which leads to sub-energetic SNe
- Duration of the SNe is a few days, absolute magnitude is ~ -15

SSK+ in prep.

Color is bluer than the usual supernovae

Outline

- Introduction
- sub-Energetic Supernovae from Newborn BBH
- Evolution of Accretion Disks in BBHs
- Summary

EM Counterparts of GWs

Timescale

The material accretes to BH in the viscous time

$$t_{\rm vis} = \frac{1}{\alpha \Omega_{\rm K}} \left(\frac{r_{\rm out}}{H}\right)^2$$

• The BBH merges in a merger time

$$t_{\rm mer} = \frac{5}{512} \frac{c^5}{G^3} \frac{R_{\rm ini}^4}{M_{\rm BH}^3}$$

t_{vis} ~ 3x10⁴ s << t_{mer} ~ 4x10¹⁵ s @ R_{ini}~10¹² cm, M~30 Msun
 —> The material completely accretes to BH if angular momentum is efficiently transported by MHD turbulence

Dead disk model

Perna+2016 propose the dead disk model for Fermi GBM event

If the disk cools down and becomes neutral, the MHD turbulence becomes weak, and make a "dead disk" where angular momentum transform is inefficient.

10⁴ Perna+16 Catastrophic, Steady-state full disk-heating outer rim heating Shock-heated disk, a) dead disk survives until $t_{mer} < t_{vis}$ Viscous timescale MRI active and 10^{2} actively accreting $(\sim 1 \text{ s before the merger event}).$ onto BHS Free-fall timescale Time (s) b) rapid accretion can produce GRB. 10⁰ Duration of accretion (GRB) **Black Holes** Dead disk 10⁻² Tidally heated outer rim, MRI active 10-4 10¹⁰ 10^{8} 10^{9} 10'

Orbital separation (cm)

Motivation

Perna's model seems to misestimate or ignore i) tidal torque from the companion ii) condition for MRI activation/inactivation iii) mass inflow due to separation decrease

We examine the dead disc model, taking account of the above processes more carefully.

Tidal torque

Orbits of test particles

Radial profile of tidal torque

Tidal torque diverges at tidal truncation radius \rightarrow The disk cannot expand outward beyond there

Formation of Dead disk

Condition for MRI activation: $\Lambda = \frac{v_A^2}{\eta \Omega_K} > 1$, Saha's equation $\frac{\chi_e^2}{1-\chi_e} = \frac{1}{n} \left(\frac{2\pi m_e k_{\rm B} T}{h^2} \right)^{3/2} \exp\left(-\frac{E_{\rm i}}{k_{\rm B} T}\right),$ Ohmic resistivity $\eta = 234(T/1K)^{1/2}\chi_e^{-1} \text{cm}^2 \text{s}^{-1}$ Blae+94 $T > T_{dead} \sim 3000 K$ Thermal equilibrium curves Lasota'01 Thermal instability@T~ 40000K -> rapid temperature drop to T<T_{dead} Central Temperature 10⁵ 10⁴ **Dead disk formation** Bell&Lin 94 10³ $m_{dead} \sim 5 \times 10^{-7} M_{sun}$ 10² 10³ $10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8$ $t_{dead} \sim a$ few years Surface Density

- Separation decreases due to GW
 The decid dick obvinks due to tidel
 - —> The dead disk shrinks due to tidal torque
 - —> Disk heats up due to mass inflow
 - -> Disk Revival: MRI becomes active (T > T_{dead})
- Disk revival condition: Q₊ ~ M_{sd} Ω² > Q_{rad}(T_{dead})
 -> R_{rev} ~ 1.4x10¹¹ cm, M_{rev}~2.6x10¹⁴ g/s << M_{Edd}
- Time until merger: t_{mer} t_{rev} ~ 10¹² s

Impossible to explain short GRBs

Evolution of Revival Disk

GW determines evolution of Rsep

$$R_{\rm sep} = R_{\rm rev} \left(\frac{t_{\rm mer} - t}{t_{\rm mer} - t_{\rm rev}} \right)^{1}$$

Tidal torque controls M of revival disk

$$\dot{M}_{\rm GW} = -2\pi r_{\rm out} \Sigma_{\rm out} a_{\rm sep} v_{\rm GW} = -\frac{/m_{\rm d} v_{\rm GW}}{5R_{\rm sep}}$$

Solve $dm_d/dt = -\dot{M}_{GW}$

$$m_{\rm d} = m_{\rm dead} \left(\frac{t_{\rm mer} - t}{t_{\rm mer} - t_{\rm rev}}\right)^{7/20}$$
$$\dot{M}_{\rm GW} = \frac{7m_{\rm dead}}{20(t_{\rm mer} - t_{\rm rev})} \left(\frac{t_{\rm mer} - t}{t_{\rm mer} - t_{\rm rev}}\right)^{-13/20}$$

 \dot{M}_{GW} increases with time and \dot{M}_{GW} can be super Eddington before merger

Jet launching

Takahashi & Ohsuga 16

- High Accretion rate —> Geometrically thick & strong magnetic field —> jet can be launched
- Jet launch condition:
 M_{GW} > M_{jet} ~ 10L_{Edd}/c²
- Luminosity of Jets:

 $L_{jet} \thicksim \dot{M}_{GW} C^2$

Emission from Jet

Short

Summary II

- Evolution of accretion disk in BBHs are shown in the left panel.
- Disk becomes dead when the disk sufficiently cools down.
- The dead disk revives due to tidal torque ~10⁵ yr before the merger event.
- EM counterparts are detectable before the merger if merger happens around 10 Mpc.

Outline

- Introduction
- sub-Energetic Supernovae from Newborn BBH
- Evolution of Accretion Disks in BBHs
- Summary

Summary

- Detection of GW reveals existence of BBHs.
- BBHs can emit EM radiation when they are born or they merge.
- Sub-energetic SNe from newborn BBHs are detectable by current optical transient surveys.
- Dead disk revives ~10⁵ years before the merger, and it produces not GRB like burst but weak transient of longer duration.

