
Electromagnetic Radiations  
From Binary Black Holes

Shigeo S. Kimura

Collaborators
Kenji Toma, Sanemichi Takahashi (Tohoku Univ.)
Kohta Murase, Peter Meszaros (PSU)

Center for Particle Astrophys. PSU (IGC Fellow)
Dept. Astronomy & Astrophys., PSU
Dept. Physics, PSU

ref) SSK, S. Z. Takahashi, & K. Toma, 2017, MNRAS, 465, 4406 
      SSK, K. Murase, P. Meszaros in prep.



Outline

• Introduction
• sub-Energetic Supernovae from Newborn BBHs
• Evolution of Accretion Disks in BBHs
• Summary



Outline

• Introduction
• sub-Energetic Supernovae from Newborn BBH
• Evolution of Accretion Disks in BBHs
• Summary



Detection of GWs

• LIGO collaboration detected the gravitational waves 
from merging black holes (BHs)

• Revealing existence of BH-BH binaries of MBH ~ 30 Msun  

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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associated with the modeling of isolated binary stellar
evolution in galactic fields. The dynamical formation channel
is largely independent of the many unconstrained parameters of
binary evolution (e.g., the outcome of common envelope
evolution) that can cause estimates of the BBH merger rate

from the field to vary by several orders of magnitude
(Rodriguez et al. 2016).

4. DETECTION RATE

With this understanding of the dynamical formation scenario, it
is only natural to ask: what masses of dynamically formed BBHs
are most likely to be detected by Advanced LIGO? The answer
depends on two factors: the underlying distribution of BBH
mergers in mass and redshift, and the sensitivity of the LIGO
detector to BBH mergers with specific masses at a given redshift.
In Figure 2, we show the distribution of BBH mergers from all
our models, with the BBHs drawn randomly from specific GC
models proportionally to the observed mass distribution of GCs
(with clusters closer to the peak of the GC mass function
contributing more BBH mergers to our effective sample; see
Harris et al. 2014; Rodriguez et al. 2016; Appendix B). Although
there exist many mergers in the local universe ( <z 0.5) with total
masses from :M20 to :120 , the majority of mergers occurring in
the present day lie in the peak between :M30 and :M40 . This is
consistent with Morscher et al. (2015) and Rodriguez et al. (2016),
which found that GCs process through their most massive BHs
early, leaving behind the less massive systems to form binaries
and merge in the local universe. The peak at :~ M35 is primarily
dominated by contributions from the :=Z Z0.25 models, while
the tail extending to high masses is primarily from low-metallicity
( : :=Z Z Z0.05 , 0.01 ) clusters. As with GW150914, our models
show that mergers more massive that :M40 at low redshifts are
most likely to have been formed in massive, low-metallicity
clusters.
To translate this into a distribution and rate of detectable

sources, we combine the total distribution of BBH mergers
with the publicly available Advanced LIGO sensitivity spectrum

Figure 1. Interaction diagram showing the formation history for two
GW150914 progenitors in a single GC model. From top to bottom, the history
of each individual BH that will eventually comprise a GW150914-like binary is
illustrated, including all binary interactions. The legend shows the various
types of gravitational encounters included in our GC models (with the
exception of two-body relaxation). In each interaction, the black sphere
represents the GW150914 progenitor BH, while the blue and red spheres
represent other BHs (and stars) in the cluster core.

Figure 2. Distribution of BBH total masses from GCs. In gray, we show the
distribution of all mergers that occur at <z 0.5 (for GCs that form at �z 3.5),
while in blue we show the distribution of sources detectable with Advanced
LIGO during its first observing run. The median and 90% credible regions for
the total mass of GW150914 are shown in red (The LIGO Scientific
Collaboration & The Virgo Collaboration 2016b). We also show the
gravitational-wave trigger, LVT151012, in purple (where we have computed
the median and credible regions by adding the component mass median and
90% credible interval boundaries from The LIGO Scientific Collaboration &
The Virgo Collaboration 2016a). Note that while LVT151012 is below the
threshold to be considered a detection, there exists a 284% chance that the
signal was of astrophysical origin (Abbott et al. 2016d).
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in a low-metallicity environment (Z < 0.1Z⊙; Z⊙ is the metallicity of 
the Sun; see Extended Data Fig. 1) and either in the early Universe 
(2 Gyr after the Big Bang) or very recently (11 Gyr after the Big Bang).

The distribution of birth times of these massive BH–BH mergers is 
bimodal (Fig. 2 and Extended Data Fig. 2), with a majority of systems 
originating from the distant past (55% of binaries; about 2 Gyr after 
the Big Bang, corresponding to z ≈ 3) and a smaller contribution from 
relatively young binaries (25%; formed about 11 Gyr after the Big Bang, 
corresponding to z ≈ 0.2). This bimodality arises from two naturally 
competing effects: on the one hand, most low-metallicity star formation 
occurs in the early Universe; on the other hand, in contrast to previous 
work3,4, significantly more low-metallicity star formation is currently 
expected to occur in the low-redshift Universe20. Therefore, as is the case 
with binary neutron stars, we anticipate a significant contribution to 
the present-day binary-black-hole merger rate from binary black holes 
formed in low-redshift, low-metallicity star-forming regions. The delay-
time distribution of BH–BH binaries in our simulations follows a 1/t 
distribution. The birth times therefore naturally pile up at low redshifts 
(z ≈ 0.1–0.3) and this gives rise to a low-z peak (Extended Data Fig. 2a). 
However, the low-metallicity (Z < 0.1Z⊙) star formation responsible for 
the production of massive BH–BH mergers peaks at a redshift of z ≈ 3 
(Extended Data Fig. 2b). The convolution of these two effects produces 
the bimodal birth-time distribution (Extended Data Fig. 2c).

These massive GW150914-like mergers consist of black holes with 
comparable masses. The vast majority (99.8%) of mergers are found 
with mass ratios in the range q = 0.7–1.0 (Extended Data Fig. 3), with 
the mass ratio of GW150914 ( = . − .

+ .q 0 82 0 21
0 16) falling near the centre of 

the expected region. The formation of low-mass-ratio objects is sup-
pressed because low-mass-ratio progenitors tend to merge during the 
first mass-transfer event when the more massive component overfills 
its Roche lobe21. However, with decreasing total merger mass, the mass 
ratio extends to lower values. In particular, for the lower mass bin of 
Mtot,z = 25M⊙–37M⊙, mass ratios as low as q = 0.3 are also found.

We now use our full sample of double compact object mergers to 
make predictions for the merger-rate density, detection rates and 
merger mass distribution. The results are shown in Fig. 3 and Extended 
Data Table 1, in which we compare them to the measured values 
inferred from O1 LIGO observations. We find an overall detection 
rate that is consistent with the detection of one significant candidate 
(GW150914) during the principal 16-day double coincident period 
(when both LIGO gravitational-wave interferometers are operating 
simultaneously) for our standard model (M1), but that is inconsistent 
for our other two models (optimistic M2 and pessimistic M3; more 
detail below).

The BH–BH merger rates inferred from the 16 days of O1 LIGO 
observations are in the range 2–400 Gpc−3 yr−1 (ref. 22). For compar-
ison, we estimate the rate density of binary black holes from our popu-
lation synthesis dataset. We consider the full population of binary black 
holes within a redshift of z = 0.1 (that is, not weighted by their detec-
tion probability) and calculate their average source-frame merger- 
rate density. We find a value of 218 Gpc−3 yr−1 for our standard model 
(M1), which is in good agreement with the inferred LIGO rate22. By 
contrast, our optimistic model (M2) predicts too many mergers, with 
a rate density of 1,303 Gpc−3 yr−1, and our pessimistic model (M3) 
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Figure 1 | Example binary evolution leading  
to a BH–BH merger similar to GW150914.  
A massive binary star (96M⊙ (blue) + 60M⊙ 
(purple)) is formed in the distant past (2 billion 
years after Big Bang; z ≈ 3.2; top row), and after 
5 million years of evolution forms a BH–BH 
system (37M⊙ + 31M⊙; second-last row). For the 
ensuing 10.3 billion years, this BH–BH system 
is subject to loss of angular momentum, with 
the orbital separation steadily decreasing, until 
the black holes coalesce at redshift z = 0.09. 
This example binary formed in a low-metallicity 
environment (Z = 0.03Z⊙). MS, main-sequence 
star; HG, Hertzsprung-gap star; CHeB,  
core-helium-burning star; BH, black hole;  
a, orbital semi-major axis; e, eccentricity.
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• Binary evolution

associated with the modeling of isolated binary stellar
evolution in galactic fields. The dynamical formation channel
is largely independent of the many unconstrained parameters of
binary evolution (e.g., the outcome of common envelope
evolution) that can cause estimates of the BBH merger rate

from the field to vary by several orders of magnitude
(Rodriguez et al. 2016).

4. DETECTION RATE

With this understanding of the dynamical formation scenario, it
is only natural to ask: what masses of dynamically formed BBHs
are most likely to be detected by Advanced LIGO? The answer
depends on two factors: the underlying distribution of BBH
mergers in mass and redshift, and the sensitivity of the LIGO
detector to BBH mergers with specific masses at a given redshift.
In Figure 2, we show the distribution of BBH mergers from all
our models, with the BBHs drawn randomly from specific GC
models proportionally to the observed mass distribution of GCs
(with clusters closer to the peak of the GC mass function
contributing more BBH mergers to our effective sample; see
Harris et al. 2014; Rodriguez et al. 2016; Appendix B). Although
there exist many mergers in the local universe ( <z 0.5) with total
masses from :M20 to :120 , the majority of mergers occurring in
the present day lie in the peak between :M30 and :M40 . This is
consistent with Morscher et al. (2015) and Rodriguez et al. (2016),
which found that GCs process through their most massive BHs
early, leaving behind the less massive systems to form binaries
and merge in the local universe. The peak at :~ M35 is primarily
dominated by contributions from the :=Z Z0.25 models, while
the tail extending to high masses is primarily from low-metallicity
( : :=Z Z Z0.05 , 0.01 ) clusters. As with GW150914, our models
show that mergers more massive that :M40 at low redshifts are
most likely to have been formed in massive, low-metallicity
clusters.
To translate this into a distribution and rate of detectable

sources, we combine the total distribution of BBH mergers
with the publicly available Advanced LIGO sensitivity spectrum

Figure 1. Interaction diagram showing the formation history for two
GW150914 progenitors in a single GC model. From top to bottom, the history
of each individual BH that will eventually comprise a GW150914-like binary is
illustrated, including all binary interactions. The legend shows the various
types of gravitational encounters included in our GC models (with the
exception of two-body relaxation). In each interaction, the black sphere
represents the GW150914 progenitor BH, while the blue and red spheres
represent other BHs (and stars) in the cluster core.

Figure 2. Distribution of BBH total masses from GCs. In gray, we show the
distribution of all mergers that occur at <z 0.5 (for GCs that form at �z 3.5),
while in blue we show the distribution of sources detectable with Advanced
LIGO during its first observing run. The median and 90% credible regions for
the total mass of GW150914 are shown in red (The LIGO Scientific
Collaboration & The Virgo Collaboration 2016b). We also show the
gravitational-wave trigger, LVT151012, in purple (where we have computed
the median and credible regions by adding the component mass median and
90% credible interval boundaries from The LIGO Scientific Collaboration &
The Virgo Collaboration 2016a). Note that while LVT151012 is below the
threshold to be considered a detection, there exists a 284% chance that the
signal was of astrophysical origin (Abbott et al. 2016d).
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which found that GCs process through their most massive BHs
early, leaving behind the less massive systems to form binaries
and merge in the local universe. The peak at :~ M35 is primarily
dominated by contributions from the :=Z Z0.25 models, while
the tail extending to high masses is primarily from low-metallicity
( : :=Z Z Z0.05 , 0.01 ) clusters. As with GW150914, our models
show that mergers more massive that :M40 at low redshifts are
most likely to have been formed in massive, low-metallicity
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To translate this into a distribution and rate of detectable

sources, we combine the total distribution of BBH mergers
with the publicly available Advanced LIGO sensitivity spectrum
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GW150914 progenitors in a single GC model. From top to bottom, the history
of each individual BH that will eventually comprise a GW150914-like binary is
illustrated, including all binary interactions. The legend shows the various
types of gravitational encounters included in our GC models (with the
exception of two-body relaxation). In each interaction, the black sphere
represents the GW150914 progenitor BH, while the blue and red spheres
represent other BHs (and stars) in the cluster core.

Figure 2. Distribution of BBH total masses from GCs. In gray, we show the
distribution of all mergers that occur at <z 0.5 (for GCs that form at �z 3.5),
while in blue we show the distribution of sources detectable with Advanced
LIGO during its first observing run. The median and 90% credible regions for
the total mass of GW150914 are shown in red (The LIGO Scientific
Collaboration & The Virgo Collaboration 2016b). We also show the
gravitational-wave trigger, LVT151012, in purple (where we have computed
the median and credible regions by adding the component mass median and
90% credible interval boundaries from The LIGO Scientific Collaboration &
The Virgo Collaboration 2016a). Note that while LVT151012 is below the
threshold to be considered a detection, there exists a 284% chance that the
signal was of astrophysical origin (Abbott et al. 2016d).
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in a low-metallicity environment (Z < 0.1Z⊙; Z⊙ is the metallicity of 
the Sun; see Extended Data Fig. 1) and either in the early Universe 
(2 Gyr after the Big Bang) or very recently (11 Gyr after the Big Bang).

The distribution of birth times of these massive BH–BH mergers is 
bimodal (Fig. 2 and Extended Data Fig. 2), with a majority of systems 
originating from the distant past (55% of binaries; about 2 Gyr after 
the Big Bang, corresponding to z ≈ 3) and a smaller contribution from 
relatively young binaries (25%; formed about 11 Gyr after the Big Bang, 
corresponding to z ≈ 0.2). This bimodality arises from two naturally 
competing effects: on the one hand, most low-metallicity star formation 
occurs in the early Universe; on the other hand, in contrast to previous 
work3,4, significantly more low-metallicity star formation is currently 
expected to occur in the low-redshift Universe20. Therefore, as is the case 
with binary neutron stars, we anticipate a significant contribution to 
the present-day binary-black-hole merger rate from binary black holes 
formed in low-redshift, low-metallicity star-forming regions. The delay-
time distribution of BH–BH binaries in our simulations follows a 1/t 
distribution. The birth times therefore naturally pile up at low redshifts 
(z ≈ 0.1–0.3) and this gives rise to a low-z peak (Extended Data Fig. 2a). 
However, the low-metallicity (Z < 0.1Z⊙) star formation responsible for 
the production of massive BH–BH mergers peaks at a redshift of z ≈ 3 
(Extended Data Fig. 2b). The convolution of these two effects produces 
the bimodal birth-time distribution (Extended Data Fig. 2c).

These massive GW150914-like mergers consist of black holes with 
comparable masses. The vast majority (99.8%) of mergers are found 
with mass ratios in the range q = 0.7–1.0 (Extended Data Fig. 3), with 
the mass ratio of GW150914 ( = . − .

+ .q 0 82 0 21
0 16) falling near the centre of 

the expected region. The formation of low-mass-ratio objects is sup-
pressed because low-mass-ratio progenitors tend to merge during the 
first mass-transfer event when the more massive component overfills 
its Roche lobe21. However, with decreasing total merger mass, the mass 
ratio extends to lower values. In particular, for the lower mass bin of 
Mtot,z = 25M⊙–37M⊙, mass ratios as low as q = 0.3 are also found.

We now use our full sample of double compact object mergers to 
make predictions for the merger-rate density, detection rates and 
merger mass distribution. The results are shown in Fig. 3 and Extended 
Data Table 1, in which we compare them to the measured values 
inferred from O1 LIGO observations. We find an overall detection 
rate that is consistent with the detection of one significant candidate 
(GW150914) during the principal 16-day double coincident period 
(when both LIGO gravitational-wave interferometers are operating 
simultaneously) for our standard model (M1), but that is inconsistent 
for our other two models (optimistic M2 and pessimistic M3; more 
detail below).

The BH–BH merger rates inferred from the 16 days of O1 LIGO 
observations are in the range 2–400 Gpc−3 yr−1 (ref. 22). For compar-
ison, we estimate the rate density of binary black holes from our popu-
lation synthesis dataset. We consider the full population of binary black 
holes within a redshift of z = 0.1 (that is, not weighted by their detec-
tion probability) and calculate their average source-frame merger- 
rate density. We find a value of 218 Gpc−3 yr−1 for our standard model 
(M1), which is in good agreement with the inferred LIGO rate22. By 
contrast, our optimistic model (M2) predicts too many mergers, with 
a rate density of 1,303 Gpc−3 yr−1, and our pessimistic model (M3) 
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Figure 1 | Example binary evolution leading  
to a BH–BH merger similar to GW150914.  
A massive binary star (96M⊙ (blue) + 60M⊙ 
(purple)) is formed in the distant past (2 billion 
years after Big Bang; z ≈ 3.2; top row), and after 
5 million years of evolution forms a BH–BH 
system (37M⊙ + 31M⊙; second-last row). For the 
ensuing 10.3 billion years, this BH–BH system 
is subject to loss of angular momentum, with 
the orbital separation steadily decreasing, until 
the black holes coalesce at redshift z = 0.09. 
This example binary formed in a low-metallicity 
environment (Z = 0.03Z⊙). MS, main-sequence 
star; HG, Hertzsprung-gap star; CHeB,  
core-helium-burning star; BH, black hole;  
a, orbital semi-major axis; e, eccentricity.
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• Binary evolution

associated with the modeling of isolated binary stellar
evolution in galactic fields. The dynamical formation channel
is largely independent of the many unconstrained parameters of
binary evolution (e.g., the outcome of common envelope
evolution) that can cause estimates of the BBH merger rate

from the field to vary by several orders of magnitude
(Rodriguez et al. 2016).

4. DETECTION RATE

With this understanding of the dynamical formation scenario, it
is only natural to ask: what masses of dynamically formed BBHs
are most likely to be detected by Advanced LIGO? The answer
depends on two factors: the underlying distribution of BBH
mergers in mass and redshift, and the sensitivity of the LIGO
detector to BBH mergers with specific masses at a given redshift.
In Figure 2, we show the distribution of BBH mergers from all
our models, with the BBHs drawn randomly from specific GC
models proportionally to the observed mass distribution of GCs
(with clusters closer to the peak of the GC mass function
contributing more BBH mergers to our effective sample; see
Harris et al. 2014; Rodriguez et al. 2016; Appendix B). Although
there exist many mergers in the local universe ( <z 0.5) with total
masses from :M20 to :120 , the majority of mergers occurring in
the present day lie in the peak between :M30 and :M40 . This is
consistent with Morscher et al. (2015) and Rodriguez et al. (2016),
which found that GCs process through their most massive BHs
early, leaving behind the less massive systems to form binaries
and merge in the local universe. The peak at :~ M35 is primarily
dominated by contributions from the :=Z Z0.25 models, while
the tail extending to high masses is primarily from low-metallicity
( : :=Z Z Z0.05 , 0.01 ) clusters. As with GW150914, our models
show that mergers more massive that :M40 at low redshifts are
most likely to have been formed in massive, low-metallicity
clusters.
To translate this into a distribution and rate of detectable

sources, we combine the total distribution of BBH mergers
with the publicly available Advanced LIGO sensitivity spectrum

Figure 1. Interaction diagram showing the formation history for two
GW150914 progenitors in a single GC model. From top to bottom, the history
of each individual BH that will eventually comprise a GW150914-like binary is
illustrated, including all binary interactions. The legend shows the various
types of gravitational encounters included in our GC models (with the
exception of two-body relaxation). In each interaction, the black sphere
represents the GW150914 progenitor BH, while the blue and red spheres
represent other BHs (and stars) in the cluster core.

Figure 2. Distribution of BBH total masses from GCs. In gray, we show the
distribution of all mergers that occur at <z 0.5 (for GCs that form at �z 3.5),
while in blue we show the distribution of sources detectable with Advanced
LIGO during its first observing run. The median and 90% credible regions for
the total mass of GW150914 are shown in red (The LIGO Scientific
Collaboration & The Virgo Collaboration 2016b). We also show the
gravitational-wave trigger, LVT151012, in purple (where we have computed
the median and credible regions by adding the component mass median and
90% credible interval boundaries from The LIGO Scientific Collaboration &
The Virgo Collaboration 2016a). Note that while LVT151012 is below the
threshold to be considered a detection, there exists a 284% chance that the
signal was of astrophysical origin (Abbott et al. 2016d).
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Figure 3. Time evolution of the four cases. From top to bottom, Cases-I-high, -II-high, -I-low, and -II-low are shown. From left to right, the results are shown for
t = 0, 50, and 500 inner rotations. White lines illustrate magnetic fields, and colors indicate isodensity surfaces.

(Animations and a color version of this figure are available in the online journal.)
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• Gravitational energy 
—> Radiation energy

• Angular momentum 
—> Accretion disk

•  Angular momentum transport 
is necessary for continuous 
accretion  
—> MHD turbulence made by 
magnetorotational instability 
(MRI)

• Accretion may take place when 
BBHs are born and/or merging
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Binary Evolution scenario
• massive star binary  

—> Binary Black Hole
• First, Primary —> BH
• Secondary becomes giant 

—>Common envelope
• Ejection of CE 

 —> close BH-WR binary
• WR collapses to BH  

—> BBH formation
• Direct Collapse  

= Failed Supernovae
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in a low-metallicity environment (Z < 0.1Z⊙; Z⊙ is the metallicity of 
the Sun; see Extended Data Fig. 1) and either in the early Universe 
(2 Gyr after the Big Bang) or very recently (11 Gyr after the Big Bang).

The distribution of birth times of these massive BH–BH mergers is 
bimodal (Fig. 2 and Extended Data Fig. 2), with a majority of systems 
originating from the distant past (55% of binaries; about 2 Gyr after 
the Big Bang, corresponding to z ≈ 3) and a smaller contribution from 
relatively young binaries (25%; formed about 11 Gyr after the Big Bang, 
corresponding to z ≈ 0.2). This bimodality arises from two naturally 
competing effects: on the one hand, most low-metallicity star formation 
occurs in the early Universe; on the other hand, in contrast to previous 
work3,4, significantly more low-metallicity star formation is currently 
expected to occur in the low-redshift Universe20. Therefore, as is the case 
with binary neutron stars, we anticipate a significant contribution to 
the present-day binary-black-hole merger rate from binary black holes 
formed in low-redshift, low-metallicity star-forming regions. The delay-
time distribution of BH–BH binaries in our simulations follows a 1/t 
distribution. The birth times therefore naturally pile up at low redshifts 
(z ≈ 0.1–0.3) and this gives rise to a low-z peak (Extended Data Fig. 2a). 
However, the low-metallicity (Z < 0.1Z⊙) star formation responsible for 
the production of massive BH–BH mergers peaks at a redshift of z ≈ 3 
(Extended Data Fig. 2b). The convolution of these two effects produces 
the bimodal birth-time distribution (Extended Data Fig. 2c).

These massive GW150914-like mergers consist of black holes with 
comparable masses. The vast majority (99.8%) of mergers are found 
with mass ratios in the range q = 0.7–1.0 (Extended Data Fig. 3), with 
the mass ratio of GW150914 ( = . − .

+ .q 0 82 0 21
0 16) falling near the centre of 

the expected region. The formation of low-mass-ratio objects is sup-
pressed because low-mass-ratio progenitors tend to merge during the 
first mass-transfer event when the more massive component overfills 
its Roche lobe21. However, with decreasing total merger mass, the mass 
ratio extends to lower values. In particular, for the lower mass bin of 
Mtot,z = 25M⊙–37M⊙, mass ratios as low as q = 0.3 are also found.

We now use our full sample of double compact object mergers to 
make predictions for the merger-rate density, detection rates and 
merger mass distribution. The results are shown in Fig. 3 and Extended 
Data Table 1, in which we compare them to the measured values 
inferred from O1 LIGO observations. We find an overall detection 
rate that is consistent with the detection of one significant candidate 
(GW150914) during the principal 16-day double coincident period 
(when both LIGO gravitational-wave interferometers are operating 
simultaneously) for our standard model (M1), but that is inconsistent 
for our other two models (optimistic M2 and pessimistic M3; more 
detail below).

The BH–BH merger rates inferred from the 16 days of O1 LIGO 
observations are in the range 2–400 Gpc−3 yr−1 (ref. 22). For compar-
ison, we estimate the rate density of binary black holes from our popu-
lation synthesis dataset. We consider the full population of binary black 
holes within a redshift of z = 0.1 (that is, not weighted by their detec-
tion probability) and calculate their average source-frame merger- 
rate density. We find a value of 218 Gpc−3 yr−1 for our standard model 
(M1), which is in good agreement with the inferred LIGO rate22. By 
contrast, our optimistic model (M2) predicts too many mergers, with 
a rate density of 1,303 Gpc−3 yr−1, and our pessimistic model (M3) 
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Figure 1 | Example binary evolution leading  
to a BH–BH merger similar to GW150914.  
A massive binary star (96M⊙ (blue) + 60M⊙ 
(purple)) is formed in the distant past (2 billion 
years after Big Bang; z ≈ 3.2; top row), and after 
5 million years of evolution forms a BH–BH 
system (37M⊙ + 31M⊙; second-last row). For the 
ensuing 10.3 billion years, this BH–BH system 
is subject to loss of angular momentum, with 
the orbital separation steadily decreasing, until 
the black holes coalesce at redshift z = 0.09. 
This example binary formed in a low-metallicity 
environment (Z = 0.03Z⊙). MS, main-sequence 
star; HG, Hertzsprung-gap star; CHeB,  
core-helium-burning star; BH, black hole;  
a, orbital semi-major axis; e, eccentricity.
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Failed Supernovae

• ProtoNeutron Star forms when massive star collapses
• Neutrino loss—> Binding energy decrease  

—> shock propagation—> envelope ejection ~ 0.01Msun

The Astrophysical Journal, 769:109 (8pp), 2013 June 1 Lovegrove & Woosley

Figure 6. Collapse of the RSG15 model in the maximum neutrino mass loss
case, showing a shock forming due to the effective core mass decrement. Positive
velocities are outward, and negative are inward. The curves are purple for early
times, shading to red for late. This model has the TOV limit set to 2.5, resulting
in a mass decrement of 0.525 M⊙. The shock propagates out of the helium core
(r = 3.568 × 1010 cm). Time shock reaches 1010 cm: 38 s. Time to end of
helium core: 196 s. Time to 1011 cm: 577 s.
(A color version of this figure is available in the online journal.)

Table 3
Full Mass Loss Models

Stellar Model TOV Mass Lost KEa Shock Strengthb

(M⊙) (M⊙) (erg) (km s−1)

RSG15 2.0 0.277 1.287 × 1047 814
. . . 2.1 0.331 2.059 × 1047 926
. . . 2.2 0.382 2.953 × 1047 1019
. . . 2.3 0.430 3.911 × 1047 1094
. . . 2.4 0.477 4.896 × 1047 1157
. . . 2.5 0.523 5.779 × 1047 1204

RSG25 2.0 0.179 8.418 × 1045 394
. . . 2.1 0.230 2.893 × 1046 569
. . . 2.2 0.281 6.581 × 1046 725
. . . 2.3 0.331 1.204 × 1047 866
. . . 2.4 0.382 1.930 × 1047 996
. . . 2.5 0.433 2.827 × 1047 1114

Notes.
a At base of hydrogen envelope.
b At r = 1011 cm.

the amount of material that has been accreted by the core, rather
than switching it off after a predetermined timescale as in the
upper bound model. As can be seen in Figure 5, this model (red)
loses mass over a longer timescale than the maximum loss model
(blue), continuing until the point mass reaches the TOV limit, in
this case 2.5 M⊙, after which the total mass becomes constant.
We expect equal or less mass loss in this case as compared to the
maximum loss model. In the case where the TOV limit is high
enough that the neutron star lives for longer than the cooling
timescale, the core loses close to the maximum possible amount
of mass; in the case where it does not, however, mass loss is
suppressed as neutrinos that would have been emitted instead
end up inside the black hole. The amount of mass lost in each
case is listed in Table 3.

Though the overall mass decrement in the full model cases
is lower than in the maximum loss case, it is still sufficient to
produce an outgoing shock. Figure 7 shows the shock evolution
for RSG15, TOV = 2.5 M⊙. The approximate shock strengths

Figure 7. Collapse of the RSG15 model in the fully-modeled neutrino mass
loss case, showing a shock forming due to the effective core mass decrement.
Positive velocities are outward, and negative are inward. The curves are purple
for early times, shading to red for late. This model has the TOV limit set to 2.5,
resulting in a mass decrement of 0.523 M⊙. The shock is smaller in strength
than the maximum-loss case and reaches the edge of the simulation with a lower
velocity. Time shock reaches 1010 cm: 40 s. Time to end of helium core: 207 s.
Time to 1011 cm: 620 s.
(A color version of this figure is available in the online journal.)

Figure 8. RSG15 shocks at the limit of the CASTRO simulated domain for
six different choices of TOV limit, full neutrino loss model. The upper curve
corresponds to TOV = 2.5 M⊙, and the lowest to TOV = 2.0 M⊙. Other curves
are spaced by 0.1 M⊙.
(A color version of this figure is available in the online journal.)

at 1011 cm for our six different choices of TOV limit are listed in
Table 3. The six shocks created in RSG15 are shown in Figure 8.

We also tested variations in the parameter ϵ, which controls
the fraction of binding energy trapped as thermal mass. Changes
in ϵ have a small but real effect on the total mass loss, depending
on the amount of accreted mass. The more mass accreted, the
more important ϵ will be. As higher TOV limit models tend to
accrete longer, ϵ has a higher impact here. A lower epsilon leads
to a higher mass loss as less of the binding energy is temporarily
trapped as thermal mass. We tested the range ϵ < 0.5, identified
as the physically reasonable range of this parameter. For the case
where the TOV limit is 2.5 M⊙, the most sensitive, a change
of 0.05 in ϵ in RSG25 resulted in approximately a 0.011 M⊙
change in the overall mass loss. In the extreme case ϵ = 0.5,
this will make a TOV = 2.5 M⊙ model look like a TOV ∼
2.35 M⊙ model. For lower TOV limits, the effect of varying ϵ
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Bondi-Hoyle Accretion
• The primary BH accretes the failed SN ejecta by  

Bondi-Hoyle accretion rate
2

Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)

~ 4.2x1025 g/s >> ṀEdd

r0 ¼
f2v21
GM

; ð15Þ

which may be useful as an alternative form to Eq.
(10).

Note that these equations do not follow mate-
rial down to the accretor. Accretion is assumed to
occur through an infinitely thin, infinite density
column on the h ¼ 0 axis. This is not physically
consistent with the ballistic assumption, since it
would not be possible to radiate away the thermal
energy released as the material loses its h velocity.
Even with a finite size for the accretion column, a
significant trapping of thermal energy would still
be expected. For now we shall neglect this effect.

2.3. The analysis of Bondi and Hoyle

Bondi and Hoyle (1944) extended the analysis
to include the accretion column (the wake fol-
lowing the point mass on the h ¼ 0 axis). We will
now follow their reasoning, and show that this
suggests that the accretion rate could be as little as
half the value suggested in Eq. (7). Fig. 2 sketches
the quantities we shall use.

From the orbit equations, we know that mate-
rial encounters the h ¼ 0 axis at

r ¼ f2v21
2GM

:

This means that the mass flux arriving in the dis-
tance r to r þ dr is given by

2pfdfq1v1 ¼ 2pGMq1

v1
dr ¼ Kdr; ð16Þ

which defines K. Note that it is independent of r.
The transverse momentum flux in the same inter-
val is given by

Kvhðh ¼ 0Þ 1

2ps
;

which is the mass flux, multiplied by the transverse
velocity, divided over the approximate area of the
wake. Applying the orbit equations once more,
and noting that a momentum flux is the same as a
pressure, we find

Ps %
K
2ps

ffiffiffiffiffiffiffiffiffiffiffi
2GM
r

r
ð17Þ

as an estimate of the pressure in the wake. The
longitudinal pressure force is therefore

dðps2PsÞ ¼ K

ffiffiffiffiffiffiffiffi
GM
2

r
d

sffiffi
r

p
" #

:

Material will take a time of about r=v1 to fall
onto the accretor from the point it encounters the
axis. This means that we can use the accretion rate
to estimate the mass per unit length of the wake, m,
as

m % K
GM
v31

: ð18Þ

This makes the gravitational force per unit length

r

s

Fig. 2. Sketch of the geometry for the Bondi–Hoyle analysis.
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Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)

this general solution immediately shows that
C ¼ GM=h2. The values of A and B are fixed by the
boundary conditions that u ! 0 (that is, r ! 1)
as h ! p, and that

_r ¼ "h
du
dh

! "v1 as h ! p:

These will be satisfied by

u ¼ GM
h2

ð1þ cos hÞ " v1
h

sin h: ð4Þ

Now consider when the flow encounters the
h ¼ 0 axis. As a first approximation, the h velocity
will go to zero at this point. The radial velocity will
be v1 and the radius of the streamline will be given
by

1

r
¼ 2GM

h2
: ð5Þ

Assuming that material will be accreted if it is
bound to the star we have

1

2
v21 " GM

r
< 0

or

f < fHL ¼ 2GM
v21

; ð6Þ

which defines the critical impact parameter, known
as the Hoyle–Lyttleton radius. Material with an
impact parameter smaller than this value will be
accreted. The mass flux is therefore

_MHL ¼ pf2HLv1q1 ¼ 4pG2M2q1

v31
; ð7Þ

which is known as the Hoyle–Lyttleton accretion
rate.

2.2. Analytic solution

The Hoyle–Lyttleton analysis contains no fluid
effects, which makes it ripe for analytic solution.
This was performed by Bisnovatyi-Kogan et al.
(1979), who derived the following solution for the
flow field:

vr ¼ "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ 2GM
r

" f2v21
r2

s

; ð8Þ

vh ¼
fv1
r

; ð9Þ

r ¼ f2v21
GMð1þ cos hÞ þ fv21 sin h

; ð10Þ

q ¼ q1f
2

r sin hð2f" r sin hÞ
: ð11Þ

The first three equations are fairly straightforward,
and follow (albeit tediously) from the orbit solu-
tion given above. The equation for the density is
rather less pleasant, and involves solving the
steady state gas continuity equation under condi-
tions of axial symmetry.

Eq. (4) may be rewritten into the form

r ¼ r0
1þ e cosðh" h0Þ

; ð12Þ

where e is the eccentricity of the orbit, r0 is the
semi-latus rectum, and h0 is the periastron angle.
These quantities may be expressed as

h0 ¼ tan"1 fv21
GM

" #
; ð13Þ

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2v41
G2M2

s

; ð14Þ

Fig. 1. Sketch of the Bondi–Hoyle–Lyttleton accretion geometry.
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Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)

Edgar 04

SSK+ in prep. va: ejecta velocity 
vorb: orbital velocity
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Figure 5. Left: time and azimuthally averaged density and streamlines for gas velocity. The color bar at the top of the figure shows the
ratio between velocity magnitude and speed of light. The solid red line shows the location of electron scattering photosphere measured
from the top and bottom of the simulation box, while the dashed red line shows the location of photosphere for effective absorption opacity.
Right: time and azimuthally averaged radiation energy density and streamlines for lab frame flux. The color bar at the top of the figure
represents |F r/(cEr)|.

tribution of ρ, v, Er, F r in the r− z plane. Consistent
with the snapshot shown in Figure 3, the disk clearly
has two distinct components, namely the turbulent body
of the disk and a strong outflow region within ∼ 45◦

from the rotation axis. Most of the mass is concentrated
near the mid-plane of the disk, where accretion happens.
The outflow starts from a place well inside the electron
scattering photosphere and carries the lowest density gas
in the disk. However, a significant amount of radiation
energy is carried along with the outflow. The stream-
lines pointing towards the inner boundary are probably
an artifact of the cylindrical coordinate we are using.
The emerging flux from the photosphere at each radius
is a composition of photons generated at different radii,
which completely changes the radial profiles of the radi-
ation flux compared with the classical one zone models
where the radiation flux from photosphere at each radius
is only determined by the photons generated locally.
In order for the outward moving gas seen in the sim-

ulation to be truly astrophysical outflow, the gas has to
be unbound from the gravitational potential. However,
with radiative diffusion, the classical Bernoulli number
is no longer a constant. One lower bound estimate is to
treat the radiation acceleration as an effective reduction
of the gravitational acceleration and we use the following
quantity to determine whether the gas is bound or not:

Et =
1

2
ρv2 +

γP

γ − 1
− Egrav +

Er

3
, (9)

where Egrav = −ρφ. The first three terms in this equa-
tion are the classical Bernoulli constant, while the last
term is to account for the balance of gravity due to radi-
ation force. We azimuthally average Et between 10570ts
and 12080ts, which is shown in Figure 6. The outflow
region seen in Figure 5 does have positive Et while the

Figure 6. Distribution of azimuthally and time averaged total
energy (equation 9) in the r − z plane. The color shows the part
of gas with positive total energy while the contours are for the gas
with negative total energy.

turbulent part of the disk has negative Et. Although Fig-
ure 5 shows that the gas with negative Et beyond 30rs
can also move outward, this is just the dynamic motion
of the torus and they cannot reach infinity. They will
fall back at a larger radius, which is not captured by
the simulation domain. We have done another simula-
tion with similar setup but without radiation field. The
gas can have similar large scale outward motion but the
Bernoulli constant is always negative.

4.4. Rotation Profile and Force Balance

When both gas and radiation pressure gradients along
the radial direction are negligible, gravitational force is
balanced by the centrifugal force and the disk is in Keple-

Radiation-driven Outflow
• Accreted material 

forms a disk 
• super-Eddington accretion rate  

—> A radiation-driven outflow

Wind-capture discs in binary systems 301

Figure 5. Structure of the stagnation region for the 15 au case at t = 3 orbits.
Top: grey shows disc density iso-surfaces, while blue shows velocity iso-
surfaces of wind material with speeds <2 km s−1. Middle: flow streamline
that starts at the boundary (wind) is deflected by the secondary’s gravitational
field, reaches the stagnation region and is finally accreted on to the disc.
Bottom: flow streamline field with a colour scale in Mach units.

appears able to strip a small fraction of disc’s gas and liberate it
from the gravitational pull of the companion. This is likely to happen
at the outer parts of the disc where the ram pressures of the wind
and the disc are comparable. Thus the wind–disc interaction induces
perturbations on the orbits of the disc material, which may be suf-
ficiently strong to overcome the gravitational potential of the com-
panion. Some disc gas is pushed outside the computational domain
then.

Moving to comparisons of simulations with different a, we see
that the disc mass in the 15 au model reaches its maximum value
of about 4 × 10−6 M⊙ in ∼0.7 orbits (earlier than the a = 10 au
case). Once again we see disc mass oscillations with amplitudes of
about 1 × 10−6 M⊙ and a frequency of ∼0.3 orbits. Note that these
oscillations have a smaller amplitude and period than for the 10 au
case. This would be consistent with our wind stripping interpretation
as the wind’s ram pressure is proportional to a−2 x−1

s , where x−1
s is

the distance between the secondary and the centre of mass.
The disc mass profile of the 20 au model is quite different. While

an initial disc forms with a mass ∼6.5 × 10−7 M⊙, a sharp growth
in mass is seen at t ≈ 0.85 orbits. The increase occurs in less than 0.1
of an orbit (t = 5.5 yr) and the disc mass then reaches a maximum
value of ∼6.5 × 10−7 M⊙ after a brief period of relaxation. Note
that in this case we do not see any disc mass oscillations. This
behaviour is also consistent with our wind stripping interpretation
as the model wind ram pressure is the weakest at 20 au away from
the primary.

4.3 Disc orbits

An interesting result from our simulations is that the shape of the
disc gas orbits significantly depends on a. We show this relation
using the disc gas streamline maps in Fig. 8, where the top panel
presents a 3D map of the disc gas velocity distribution in colours for
the 10 au model, along with sliced (half the disc) density contours
in translucent red colour. The lines show that the gas is supersonic,
the orbits have low eccentricities, e, and the velocity decreases with
distance from the secondary.

In the bottom row of Fig. 8, we show a quantitative comparison
of disc gas orbits as a function of a, at t = 3 orbits, corresponding
to the 10, 15 and 20 au cases from left to right, respectively. The
maps consistently show that e is a function of both, rd and a. For a
particular disc, material located at small disc radii shows moderately
higher e than material located at larger radii. Comparing discs with
different a we see that (i) the magnitude of the average e increases
with increasing a and (ii) the angle between the semimajor axis of
the orbits and the wind velocity field decreases with a. The latter is
particularly clear in orbits with small disc radii. This behaviour is
in good agreement with our findings in Section 6; the angle is close
to zero in the 20 au model (rightmost panel).

Finally, the colour bars in the bottom panels of Fig. 8 show disc
gas position along the direction perpendicular to the orbital plane;
receding material is red whereas approaching material is blue. Note
that we have chosen different colour limits in each panel in order
to stress disc orbital features. The colour of the lines in the 10 and
15 au cases (left-hand and middle panels) consistently shows that
material oscillates about the orbital plane mildly with amplitudes
no larger than 0.2 disc radii and frequencies of order half an orbit.
The oscillation are much weaker in the 20 au case. We do not see
any correlation between the colour of the lines – i.e. the position
about the orbital plane – and the wind velocity field direction (which
points from the top left-hand corner to the bottom right-hand one;
Fig. 8, bottom row).

5 D ISCUSSION

5.1 Accretion on to the companion and implications for
PPN/PN phenomenology

In Fig. 9, we show the evolution of the secondary’s accretion rate.
The plots show the total gas flow into a region within a 4 cell radius
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Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)~ 6.3x1044 erg/s
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Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)

Outflow-driven SNe

• Radiation-driven outflow pushes the ejecta  
—> sub-energetic supernova Ew ~ 1.4x1049 erg
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Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)

4

The breakout time of this accelerating ejecta is esti-
mated to be

tbo,bsg≈
(

36κ3m3
ej

28π2c2fwLw,i

)1/5

(17)

≃ 1.6× 105M−1/10
1.5 a3/513 R−3/10

12 m2/5
−3 f

−1/5
0.5 v−2/5

10 s,

which is shorter than tbr. The breakout radius is

Rbo,bsg≈
2

3
tbo,bsgvej(t = tbo,bsg) (18)

≃ 6.0× 1013M1/10
1.5 a−3/5

13 R3/10
12 m3/5

−3 f
1/5
0.5 v2/510 cm.

The internal energy after the photon breakout is
determined by the balance between the energy
injection by the outflow and the energy loss by
the diffusion of photons, that is Eintc/(Rejτej) =
Lw, where Eint is the thermal energy deposited in
the ejecta and τej ≈ ρejRejκ. The temperature is
estimated to be Tej ≈ (ϵradEint/(arVej))1/4 ∝ t−3/2,
whose value at the photon breakout time is

Tbo,bsg ≃ 7.5×104M1/40
1.5 a−3/20

13 R3/40
12 m−1/10

−3 f1/20
0.5 v1/1010 K.

(19)
The observed luminosity is the same as the out-
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ple numerical models. The upper panel shows the bolometric
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ature Tej. The red and blue lines correspond to the cases for
the cases with WR and BSG, respectively.
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ej). The outflow luminosity Lw is estimated
from Equations (5)–(7) and (10). We start the calcula-
tion at t = tini = (a+Racc)/vej,i, at which time the out-
flow begins to be produced (t = 0 is the time when the
secondary collapses). For the initial condition, we use
Rej = a+Racc, vej = vej,i, and Eint = (R∗/a)4Eej,i. The
initial condition does not affect the results very much as
long as Eint ! Eej,i.
We calculate the two models tabulated in table 1. Fig-

ure 2 shows the evolution of the physical quantities. The
analytic estimates reproduce well the numerical models.
The peak bolometric luminosities, Lph, the temperature
at that time, T = (3ϵradEint/(4πarR3

ej))
1/4, and the du-

ration are agreement within a factor of 2. We also plot
the U band (365 nm) and R band (658 nm) absolute
AB magnitudes in Figure 3. We use the Planck spec-
tra corresponding to the temperature shown in Figure 2.
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Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)
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ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
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The breakout time of this accelerating ejecta is esti-
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The internal energy after the photon breakout is
determined by the balance between the energy
injection by the outflow and the energy loss by
the diffusion of photons, that is Eintc/(Rejτej) =
Lw, where Eint is the thermal energy deposited in
the ejecta and τej ≈ ρejRejκ. The temperature is
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This luminous phase lasts until the outflow be-
comes weak, i.e., t = tdur ≃ 8.2 days.

3.2. Simple numerical models

To obtain light curves in specific passbands of
photometric systems, we consider the evolution of
a spherically symmetric ejecta with an energy in-
put term (cf. Metzger et al. 2014; Murase et al. 2015;
Kashiyama et al. 2016). The ejecta radius evolves as
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where Ekin = Mejv2ej/2 is the ejecta kinetic energy, Eint

is the total thermal energy in the ejecta, and tdyn =
Rej/vej is the dynamical time of the ejecta. The total
thermal energy evolves as

dEint

dt
= fiLw − Eint

tdyn
− Lph, (23)

where fi ∼ 1 is the conversion factor of the outflow
kinetic energy into internal energy of the ejecta and

Lph =
ϵradEint

tph
=

Eint

(1 + τej)Rej/c
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Figure 2. Time evolution of physical quantities in the sim-
ple numerical models. The upper panel shows the bolometric
luminosity Lph (solid lines) and the outflow luminosity Lw

(dashed lines), and the lower panel shows the ejecta temper-
ature Tej. The red and blue lines correspond to the cases for
the cases with WR and BSG, respectively.

is the energy loss by the diffusion of photons. We
use the optical depth for electron scattering τej ∼
3Mejκ/(4πR2

ej). The outflow luminosity Lw is estimated
from Equations (5)–(7) and (10). We start the calcula-
tion at t = tini = (a+Racc)/vej,i, at which time the out-
flow begins to be produced (t = 0 is the time when the
secondary collapses). For the initial condition, we use
Rej = a+Racc, vej = vej,i, and Eint = (R∗/a)4Eej,i. The
initial condition does not affect the results very much as
long as Eint ! Eej,i.
We calculate the two models tabulated in table 1. Fig-

ure 2 shows the evolution of the physical quantities. The
analytic estimates reproduce well the numerical models.
The peak bolometric luminosities, Lph, the temperature
at that time, T = (3ϵradEint/(4πarR3

ej))
1/4, and the du-

ration are agreement within a factor of 2. We also plot
the U band (365 nm) and R band (658 nm) absolute
AB magnitudes in Figure 3. We use the Planck spec-
tra corresponding to the temperature shown in Figure 2.

Time Evolution

• Duration: a few days
• Temperature: 104 — 105 K

4

The breakout time of this accelerating ejecta is esti-
mated to be

tbo,bsg≈
(

36κ3m3
ej

28π2c2fwLw,i

)1/5

(17)

≃ 1.6× 105M−1/10
1.5 a3/513 R−3/10

12 m2/5
−3 f

−1/5
0.5 v−2/5

10 s,

which is shorter than tbr. The breakout radius is

Rbo,bsg≈
2

3
tbo,bsgvej(t = tbo,bsg) (18)

≃ 6.0× 1013M1/10
1.5 a−3/5

13 R3/10
12 m3/5

−3 f
1/5
0.5 v2/510 cm.

The internal energy after the photon breakout is
determined by the balance between the energy
injection by the outflow and the energy loss by
the diffusion of photons, that is Eintc/(Rejτej) =
Lw, where Eint is the thermal energy deposited in
the ejecta and τej ≈ ρejRejκ. The temperature is
estimated to be Tej ≈ (ϵradEint/(arVej))1/4 ∝ t−3/2,
whose value at the photon breakout time is

Tbo,bsg ≃ 7.5×104M1/40
1.5 a−3/20

13 R3/40
12 m−1/10

−3 f1/20
0.5 v1/1010 K.

(19)
The observed luminosity is the same as the out-
flow luminosity,

Lbo,bsg≈ ϵradLw,i (20)

≃ 2.0× 1042M1/2
1.5 a−3

13 R
3/2
12 m−3f0.5v

2
10 erg s−1.

This luminous phase lasts until the outflow be-
comes weak, i.e., t = tdur ≃ 8.2 days.

3.2. Simple numerical models

To obtain light curves in specific passbands of
photometric systems, we consider the evolution of
a spherically symmetric ejecta with an energy in-
put term (cf. Metzger et al. 2014; Murase et al. 2015;
Kashiyama et al. 2016). The ejecta radius evolves as

dRej

dt
= vej. (21)

The ejecta accelerates at the expense of its internal en-
ergy

dEkin

dt
=

Eint

tdyn
, (22)

where Ekin = Mejv2ej/2 is the ejecta kinetic energy, Eint

is the total thermal energy in the ejecta, and tdyn =
Rej/vej is the dynamical time of the ejecta. The total
thermal energy evolves as

dEint

dt
= fiLw − Eint

tdyn
− Lph, (23)

where fi ∼ 1 is the conversion factor of the outflow
kinetic energy into internal energy of the ejecta and

Lph =
ϵradEint

tph
=

Eint

(1 + τej)Rej/c
(24)

Figure 2. Time evolution of physical quantities in the sim-
ple numerical models. The upper panel shows the bolometric
luminosity Lph (solid lines) and the outflow luminosity Lw

(dashed lines), and the lower panel shows the ejecta temper-
ature Tej. The red and blue lines correspond to the cases for
the cases with WR and BSG, respectively.

is the energy loss by the diffusion of photons. We
use the optical depth for electron scattering τej ∼
3Mejκ/(4πR2

ej). The outflow luminosity Lw is estimated
from Equations (5)–(7) and (10). We start the calcula-
tion at t = tini = (a+Racc)/vej,i, at which time the out-
flow begins to be produced (t = 0 is the time when the
secondary collapses). For the initial condition, we use
Rej = a+Racc, vej = vej,i, and Eint = (R∗/a)4Eej,i. The
initial condition does not affect the results very much as
long as Eint ! Eej,i.
We calculate the two models tabulated in table 1. Fig-

ure 2 shows the evolution of the physical quantities. The
analytic estimates reproduce well the numerical models.
The peak bolometric luminosities, Lph, the temperature
at that time, T = (3ϵradEint/(4πarR3

ej))
1/4, and the du-

ration are agreement within a factor of 2. We also plot
the U band (365 nm) and R band (658 nm) absolute
AB magnitudes in Figure 3. We use the Planck spec-
tra corresponding to the temperature shown in Figure 2.
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Light Curve

• Event rate: similar to LIGO ~ 10–100 Gpc-3 yr-1  

—> expected distance ~300 Mpc 
—> ~22 mag. @ 300 Mpc 
—> detectable by Current optical transient survey

5

Figure 3. The absolute AB magnitude for U band (solid
lines) and R band (dashed lines). The red and blue lines
show the cases with WR and BSG, respectively.

These objects have peaked light curves, with a power-
law growth and an exponential decay, with a peak mag-
nitude around -15 for both cases. The duration is a
few days and a few weeks for the cases with WR and
BSG, respectively.

3.3. Shock breakout

The outflow generates a shock in the ejecta, and the
radius of the shock evolves as (Metzger et al. 2014)

dRsh

dt
= vsh +

Rsh

t
, (25)

where

vsh =

(
7

18

∫
fiLwdt

Mej

R3
ej

R3
sh

)1/2

(26)

is the shock velocity in the rest frame of the ejecta. The
second term in the right-hand side represents the ejecta
velocity at the shock radius. When the shock radius
reaches the outermost radius of the ejecta, we can ob-
serve the shock breakout (Matzner & McKee 1999).
We calculate the evolution of Rsh with the initial

condition Rsh = 10−5a, and obtain a shock break-
out time tsbo where Rsh = Rej = Rsbo is satisfied.
When the shock breakout takes place, the photons lo-
cated within ∆R ∼ 1/(κvsboρsbo) from the surface
of the ejecta can escape from the system, where vsbo
and ρsbo are the shock velocity and ejecta density at
t = tsbo, respectively. The duration of the shock break-
out is estimated to be ∆tsbo ∼ ∆R/vsbo. We can esti-
mate the temperature to be Tsbo ∼ (18ρsbov2sbo/7ar)

1/4

and the total emission energy of the shock breakout
to be Esbo ∼ aradT 4

sbo4πR
2
sbo∆R. The luminosity is

Lsbo ∼ Esbo/∆tsbo. We tabulate the estimated quan-
tities of the shock breakout in Table 1. In both case,
tsbo < tdur is satisfied, so that a shock breakout is ex-
pected. The shock breakout emission has shorter

duration, higher luminosity, and higher tempera-
ture than the photon breakout emission for both
cases. Our treatment requires Rsbo/a ≫ 1 and
∆R/Rsbo ≪ 1. However, Rsbo/a is not large, so the
treatment based on spherical symmetry is not very ac-
curate, as discussed in the next subsection.

3.4. Validity of the assumptions

Although for simplicity we have used a spheri-
cally symmetric formulation, there are substantial non-
spherical effects in this system. One is the effect of the
finite separation between the progenitor of a failed SN
and the primary BH. The position of the outflow source
is not located at the center of the ejecta. This might
affect the initial evolution of the ejecta, so the quanti-
tative discussion of the shock breakout (see Section 3.3)
is probably subject to change. Another is the effect of
the outflow. We assume a fine-tuned outflow, where the
opening angle is wide enough so that we can approxi-
mate it as spherically symmetric, while the outflow is
not completely isotropic so that the ejecta density pro-
file at the midplane does not change much. In reality,
the outflow from an accretion flow might be bi-polar
(e.g. Sa̧dowski et al. 2014; Takahashi et al. 2016). The
ejecta density profile is also probably affected by the
outflow, so that the accretion rate might be modified.
It remains for future work to investigate these effects
using radiation hydrodynamic calculations.
We use ϵrad ∼ 1 for the estimates and simple

model. The outflow kinetic energy is converted
to the thermal energy of protons at the reverse
shock. The density for the post shock region is
ρps ≈ Lw/(πR2

shv
3
w). Although the shocked elec-

trons are non-relativistic, the Coulomb collision
between protons and electrons can heat up elec-
trons up to relativistic energy. The cooling time
for the relativistic electrons is estimated to be
(Takahara & Kusunose 1985)

tcool =
2π

9αfρκc ln(5T∗)
, (27)

where T∗ = kBTe/(mec2) ∼ 1 is the normalized
electron temperature and αf is the fine structure
constant2. For the WR case, tcool < tdyn is satis-
fied for t < tbr, and thus we can use ϵrad ∼ 1 and
fi ∼ 1. On the other hand, for the BSG case, tcool
becomes longer than tdyn for t− tarr ∼ 104 s < tbr.
Thus, lower ϵrad ∼ 0.1 that comes from non-
thermal electrons is more appropriate. The de-
tailed discussion for radiative efficiency is beyond

2 After the thermal electrons become relativistic, the Coulomb
heating becomes inefficient. Thus, T∗ ∼ 1 is likely.
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Caveat

• Spherical symmetric treatment is not accurate  
a) Effect of the outflow on ejecta  
b) Finite binary separation 

• To investigate these effect, we need 3D (radiation) 
hydrodynamic simulation with feedback of outflows 
from the BH, which might be similar to the galaxy 
formation simulation with AGN feedback.



Short Summary I
• Accretion of ejecta onto primary BH produces  

a energetic outflows, which leads to sub-energetic SNe
• Duration of the SNe is a few days,  

absolute magnitude is ~ -15
• Color is bluer than the usual supernovae

2

Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)
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Figure 3. The absolute AB magnitude for U band (solid
lines) and R band (dashed lines). The red and blue lines
show the cases with WR and BSG, respectively.

These objects have peaked light curves, with a power-
law growth and an exponential decay, with a peak mag-
nitude around -15 for both cases. The duration is a
few days and a few weeks for the cases with WR and
BSG, respectively.

3.3. Shock breakout

The outflow generates a shock in the ejecta, and the
radius of the shock evolves as (Metzger et al. 2014)

dRsh

dt
= vsh +

Rsh

t
, (25)

where

vsh =

(
7

18

∫
fiLwdt

Mej

R3
ej

R3
sh

)1/2

(26)

is the shock velocity in the rest frame of the ejecta. The
second term in the right-hand side represents the ejecta
velocity at the shock radius. When the shock radius
reaches the outermost radius of the ejecta, we can ob-
serve the shock breakout (Matzner & McKee 1999).
We calculate the evolution of Rsh with the initial

condition Rsh = 10−5a, and obtain a shock break-
out time tsbo where Rsh = Rej = Rsbo is satisfied.
When the shock breakout takes place, the photons lo-
cated within ∆R ∼ 1/(κvsboρsbo) from the surface
of the ejecta can escape from the system, where vsbo
and ρsbo are the shock velocity and ejecta density at
t = tsbo, respectively. The duration of the shock break-
out is estimated to be ∆tsbo ∼ ∆R/vsbo. We can esti-
mate the temperature to be Tsbo ∼ (18ρsbov2sbo/7ar)

1/4

and the total emission energy of the shock breakout
to be Esbo ∼ aradT 4

sbo4πR
2
sbo∆R. The luminosity is

Lsbo ∼ Esbo/∆tsbo. We tabulate the estimated quan-
tities of the shock breakout in Table 1. In both case,
tsbo < tdur is satisfied, so that a shock breakout is ex-
pected. The shock breakout emission has shorter

duration, higher luminosity, and higher tempera-
ture than the photon breakout emission for both
cases. Our treatment requires Rsbo/a ≫ 1 and
∆R/Rsbo ≪ 1. However, Rsbo/a is not large, so the
treatment based on spherical symmetry is not very ac-
curate, as discussed in the next subsection.

3.4. Validity of the assumptions

Although for simplicity we have used a spheri-
cally symmetric formulation, there are substantial non-
spherical effects in this system. One is the effect of the
finite separation between the progenitor of a failed SN
and the primary BH. The position of the outflow source
is not located at the center of the ejecta. This might
affect the initial evolution of the ejecta, so the quanti-
tative discussion of the shock breakout (see Section 3.3)
is probably subject to change. Another is the effect of
the outflow. We assume a fine-tuned outflow, where the
opening angle is wide enough so that we can approxi-
mate it as spherically symmetric, while the outflow is
not completely isotropic so that the ejecta density pro-
file at the midplane does not change much. In reality,
the outflow from an accretion flow might be bi-polar
(e.g. Sa̧dowski et al. 2014; Takahashi et al. 2016). The
ejecta density profile is also probably affected by the
outflow, so that the accretion rate might be modified.
It remains for future work to investigate these effects
using radiation hydrodynamic calculations.
We use ϵrad ∼ 1 for the estimates and simple

model. The outflow kinetic energy is converted
to the thermal energy of protons at the reverse
shock. The density for the post shock region is
ρps ≈ Lw/(πR2

shv
3
w). Although the shocked elec-

trons are non-relativistic, the Coulomb collision
between protons and electrons can heat up elec-
trons up to relativistic energy. The cooling time
for the relativistic electrons is estimated to be
(Takahara & Kusunose 1985)

tcool =
2π

9αfρκc ln(5T∗)
, (27)

where T∗ = kBTe/(mec2) ∼ 1 is the normalized
electron temperature and αf is the fine structure
constant2. For the WR case, tcool < tdyn is satis-
fied for t < tbr, and thus we can use ϵrad ∼ 1 and
fi ∼ 1. On the other hand, for the BSG case, tcool
becomes longer than tdyn for t− tarr ∼ 104 s < tbr.
Thus, lower ϵrad ∼ 0.1 that comes from non-
thermal electrons is more appropriate. The de-
tailed discussion for radiative efficiency is beyond

2 After the thermal electrons become relativistic, the Coulomb
heating becomes inefficient. Thus, T∗ ∼ 1 is likely.
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EM Counterparts of GWs

• Fermi GBM reported 
possible EM counterparts.

• However, some consider 
this signal is a false alert.

et al. 1995; Burlon et al. 2009; Troja et al. 2010), and may
originate from a less collimated emission region that is
observable even when the GRB jet is not along the line of
sight to the detector.

An all-sky search of the GBM data revealed two candidates
below a threshold of 10−4 Hz chance probability. One transient,
occurring at 09:50:56.8 (11 s after GW150914), was visible
only below 50 keV, favored the soft model spectrum, and
lasted 2 s. Using the standard GBM localization procedure, we
found a source position of R.A., decl. = 267°.7, −22°.4 with a
68% statistical uncertainty region of radius 15° and a
systematic error of around 3°, as described in Connaughton
et al. (2015). At a position in Galactic coordinates of l, b = 6°.2,
2°.4, the event is compatible with an origin near the galactic
center, well separated from and incompatible with the LIGO
localization region. It is typical of the type of soft X-ray
transient activity seen regularly in the GBM background data,
particularly from the galactic center region. We do not view
this transient event as being possibly related to GW150914 and
we will not discuss it further.

The search also identified a hard transient which began at
09:50:45.8, about 0.4 s after the reported LIGO burst trigger
time of 09:50:45.4, and lasted for about 1 s. The temporal offset
of 0.4 s is much longer than the light travel time of 2−45 ms
between Fermi and the LIGO detectors. The detector counts
best matched those predicted from a hard model spectrum. We
reported this event in Blackburn et al. (2015b); henceforth, we
call it GW150914-GBM. Figure 2 shows the model-dependent
light curve of GW150914-GBM, where the detector data have
been summed using weights that maximize the signal to noise

for a given source model, and the unknown source model itself
is weighted according to its likelihood in the data.

2.2. The Rate of Detection of Short Hard Transients
in the GBM Data

The association of a likelihood value with a FAR is based on
an analysis of two months of GBM data from 2009–2010
(Blackburn et al. 2015a). The FAR for GW150914-GBM,
10−4 Hz, is very close to the reporting threshold for the search.
The likelihood value for GW150914-GBM is much lower than
those obtained for two weak short GRBs detected by Swift that
did not cause an on board GBM trigger but were found in a
targeted search, and much higher than three weak short GRBs
that were undistinguishable above the background in the GBM
data using our targeted search (Blackburn et al. 2015a).
Because the likelihood value was so close to our reporting
threshold, we considered the possibility that the background
count rates might be higher in 2015 than when the search
criteria and FAR were evaluated, implying a higher FAR than
10−4 Hz for GW150914-GBM. We used our targeted search to
examine 240 ks of GBM data from 2015 September with
218822.1 s of GBM livetime, excluding passages of Fermi
through or close to the SAA where the detectors are turned off
or count rate increases overwhelm any attempt to fit a
reasonable background model. We find 27 events above our
threshold, for a FAR of ´ -1.2 10 4 Hz, in agreement with the
previously estimated value. The distribution of events found in
the 240 ks interval is shown in Figure 3. This gives a 90%
upper limit on the expected background of hard transients of 35
in this much livetime, or ´ -1.60 10 4 Hz.
We determine the significance of a GBM counterpart

candidate by considering both its frequency of occurrence
and its proximity to the GW trigger time. Our method,
described in Blackburn (2015) and attached as Appendix B to
this work, allows us to account for all of the search windows in

Figure 2. Model-dependent count rates detected as a function of time relative
to the start of GW150914-GBM, ∼0.4 s after the GW event. The raw count
rates are weighted and summed to maximize the signal to noise for a modeled
source. CTIME time bins are 0.256 s wide. The green data points are used in
the background fit. The gold points are the counts in the time period that shows
significant emission, the gray points are outside this time period, and the blue
point shows the 1.024 s average over the gold points. For a single spectrum and
sky location, detector counts for each energy channel are weighted according to
the modeled rate and inverse noise variance due to background. The weighted
counts from all NaI and BGO detectors are then summed to obtain a signal-to-
noise optimized light curve for that model. Each model is also assigned a
likelihood by the targeted search based on the foreground counts (in the region
of time spanned by the gold points), and this is used to marginalize the light
curve over the unknown source location and spectrum.

Figure 3. Distribution of transients identified by the targeted search pipeline in
±120 ks of GBM data surrounding GW150914. The events are between 0.256
and 8.192 s in duration and sorted by best-fit spectral type. The dotted blue line
marks the likelihood ratio assigned to nearby candidate GW150914-GBM,
while the long-tail in the blue curve (hard spectrum) represents the single on
board triggered GRB in the data sample. The green and gold curves show the
candidates that favor the other template spectra used in the search.
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Timescale
• The material accretes to BH in the viscous time  

• The BBH merges in a merger time  

• tvis ~  3x104 s <<  tmer ~ 4x1015 s @ Rini~1012 cm, M~30 Msun  
—> The material completely accretes to BH if angular 
momentum is efficiently transported by MHD turbulence

Evolution of an accretion disc in BBHs 4407

Figure 1. Schematic evolutionary tracks of the disc mass (red), the mass
accretion rate (blue) and the binary separation (magenta). Note that this is
a double logarithmic plot and that phase II is much longer than the other
phases.

few thousands K. This causes the MRI activation tens of thousands
years before the merger.

In this paper, we improve the dead disc model and propose
another scenario, which predicts electromagnetic counterparts of
GWs whose luminosity increases with time. In Fig. 1, we show
the schematic evolutionary tracks of the disc mass md, the mass
accretion rate Ṁ and the binary separation Rsep. The disc expe-
riences three phases. At first, the disc forgets its initial condition
through viscous evolution. Then, the disc mass and the accretion
rate decrease with radiative cooling, which leads to decrease of
the ionization degree (phase I). This eventually suppresses MRI,
forming a dead disc that remains around the BH until the binary
separation sufficiently decreases (phase II). Then, the heating by
the tidal torque from the companion becomes effective, which re-
activates MRI in the entire region of the disc, restarting accretion
on to the BH (phase III-i). This disc ‘revival’ happens many years
before the merger.2 We describe this model in detail in Section 2.
The mass accretion rate increases as the separation decreases, and
a relativistic jet could be launched owing to high accretion rate

2 Perna et al. (2016) mentioned a low-luminosity and long-lasting transient
preceding the merger by the MRI reactivation due to photons from the outer
rim, although they did not discuss it in detail.

(phase III-ii). We estimate flux of electromagnetic emission from
the jet and discuss its detectability in Section 3. Section 4 is devoted
to summary and discussion.

2 EVO LUTION OF A D ISC IN BBH SYSTEMS

2.1 Initial evolution

We consider an equal-mass binary of initial separation Rini and
mass of BHs MBH, where the separation should be small such that
the binary can merge in the Hubble time. Some mechanisms are
proposed to realize this situation, such as the common envelope
evolution (Kinugawa et al. 2014; Belczynski et al. 2016) and/or the
friction by dense gas (Bartos et al. 2016). We focus on an accretion
disc around one of the BHs. We do not discuss the origin of this disc,
which might be fallback material of supernova explosion (e.g. Perna
et al. 2014) or a tidally disrupted object (e.g. Seto & Muto 2011).

Consider a gas ring around a BH. The ring expands both inward
and outward due to the viscous diffusion to become an accretion
disc (e.g. Pringle 1981). When the outer radius of the disc, rout,
becomes close to Rini, the tidal torque from the companion pre-
vents the disc from expanding outward (Papaloizou & Pringle 1977;
Artymowicz & Lubow 1994; Ichikawa & Osaki 1994). The balance
between the viscous torque and the tidal torque determines the disc
radius, and it is expected that the outer radius of the disc is fixed
at rout ∼ asepRini, where we introduce a separation parameter asep.
We fix asep = 0.3 in this paper for simplicity (Paczynski 1977). The
disc expands to rout in the viscous time (e.g. Pringle 1981)
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GMBH/r3 is the Keplerian angular velocity,
H = cs/"K is the scaleheight (cs is the sound speed),
M1.5 = MBH/30 M⊙, α−1 = α/0.1, Ri, 12 = Rini/(1012 cm) and
a−0.5 = asep/0.3. We use the alpha prescription for viscosity,
ν = αc2

s /"K. On the other hand, the time-scale of GW inspiral
is (e.g. Shapiro & Teukolsky 1983)
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We can see tvis < tmer for rout/H ! 105, which is valid in all the
situations we usually expect. Thus, the disc forgets its initial mass
and/or radius due to viscous evolution before the merger.

For the well-known solution of an accretion disc around single
BHs, the disc outer radius increases with time as a result of the out-
ward angular momentum transport (Lynden-Bell & Pringle 1974).
On the other hand, in a binary system, the angular momentum of
the disc material is carried to the companion by the tidal torque.
Therefore, the disc material can accrete on to the BH without in-
creasing the disc outer radius. Note that the tidal heating and torque
are effective only in very thin outer rim located just outside rout

(Ichikawa & Osaki 1994). Almost all the mass is in the viscously
heated region of r ≤ rout, and the mass that expands beyond rout

is expected to be negligible. Note that the merging time, tmer, is
unchanged by the angular momentum transport from the disc to the
companion if the mass of the disc is much lower than that of the
companion.

We consider evolution of the disc in a binary system, assum-
ing opacity of the disc is constant, κ = 0.4 cm2 g−1, for simplicity.
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Figure 1. Schematic evolutionary tracks of the disc mass (red), the mass
accretion rate (blue) and the binary separation (magenta). Note that this is
a double logarithmic plot and that phase II is much longer than the other
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a relativistic jet could be launched owing to high accretion rate
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preceding the merger by the MRI reactivation due to photons from the outer
rim, although they did not discuss it in detail.
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vents the disc from expanding outward (Papaloizou & Pringle 1977;
Artymowicz & Lubow 1994; Ichikawa & Osaki 1994). The balance
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radius, and it is expected that the outer radius of the disc is fixed
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We can see tvis < tmer for rout/H ! 105, which is valid in all the
situations we usually expect. Thus, the disc forgets its initial mass
and/or radius due to viscous evolution before the merger.

For the well-known solution of an accretion disc around single
BHs, the disc outer radius increases with time as a result of the out-
ward angular momentum transport (Lynden-Bell & Pringle 1974).
On the other hand, in a binary system, the angular momentum of
the disc material is carried to the companion by the tidal torque.
Therefore, the disc material can accrete on to the BH without in-
creasing the disc outer radius. Note that the tidal heating and torque
are effective only in very thin outer rim located just outside rout

(Ichikawa & Osaki 1994). Almost all the mass is in the viscously
heated region of r ≤ rout, and the mass that expands beyond rout

is expected to be negligible. Note that the merging time, tmer, is
unchanged by the angular momentum transport from the disc to the
companion if the mass of the disc is much lower than that of the
companion.

We consider evolution of the disc in a binary system, assum-
ing opacity of the disc is constant, κ = 0.4 cm2 g−1, for simplicity.
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Figure 3. Time evolution of the four cases. From top to bottom, Cases-I-high, -II-high, -I-low, and -II-low are shown. From left to right, the results are shown for
t = 0, 50, and 500 inner rotations. White lines illustrate magnetic fields, and colors indicate isodensity surfaces.

(Animations and a color version of this figure are available in the online journal.)
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a) dead disk survives until tmer < tvis  
(~1 s before the merger event). 
b) rapid accretion can produce GRB.

3. THE FINAL SECONDS: MAKING AN SGRB

Let us now consider the evolution of a binary BH system
with a “dead” accretion disk surrounding one of the two BHs
(analogous considerations hold for the case in which both BHs
have accretion disks). If the outer radius of the accretion disk is
smaller than the tidal truncation radius, RTT, the disk and the
companion BH do not interact significantly7 (Paczynski 1977;
Papaloizou & Pringle 1977; Ichikawa & Osaki 1994; see also
Armitage & Natarajan 2002 and Cerioli et al. 2016 for
numerical simulations of the “tidal-squeezing” effect). We
focus here on a binary BH system with two identical BHs and
with orbital separation r. We also assume that the disk and the
binary orbits are in the same plane, even though a different
geometry should not affect the conclusions of this argument.
The tidal truncation radius in this case is ~R R0.3TT
(Paczynski 1977). For any reasonable parameter set, the
viscous timescale at the outer rim of the disk (Equation (2))
is much shorter than the GW inspiral timescale8tGW
(Hughes 2009; see Figure 2):

= =t
c
G

R
m

R

m

5
256 2

0.37 s. 5GW
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3

4

3
8
4

30
3

( )

In this regime, the bare BH excites tidal dissipation,
concentrated in the outer rim of the accretion disk (Papaloizou
& Pringle 1977; Ichikawa & Osaki 1994). The associated
heating ionizes the outer rim of the disk turning on the MRI.
Because the inner part of the disk is still neutral, the material in
the outer rim cannot accrete, and hence piles up at the outer
edge of the dead zone.
As long as >t tGW 0, the system evolves in a quasi steady-

state fashion since the disk has time to adjust to the new BH–
BH configuration, maintaining an MRI active outer rim
pushing against an inactive and non-accreting inner disk. As
the binary shrinks, it reaches a point at which �t tGW 0. From
that moment on, the disk does not have time to adjust to the
inspiral of the binary system and the tidal heating reaches the
inner part of the disk, likely becoming an impulsive, shock-
driven event rather than a quasi-stationary process, analogously
to what is seen in numerical simulations of extended disks
surrounding a central binary BH (Farris et al. 2015).
The critical radius rcrit at which the two timescales are equal

is readily derived from Equations (2) and (5):

⎜ ⎟⎛
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⎞
⎠ a

= ´
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3.45 10 cm. 6crit
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The accretion phase is very rapid since the disk is very compact
due to the accumulation of material at the outer rim that took
place during the inspiral. If accretion produces the launching of
a relativistic jet—as seen in SGRBs (Berger 2014) and in tidal
disruption events (Burrows et al. 2011)—and the relativistic jet
radiates in gamma-rays, we can derive the burst duration from

Figure 2. Comparison of the free–free, viscous, and gravitational inspiral timescales as a function of the orbital separation for a system of two M=30M: black
holes. One of the two BHs is assumed to be surrounded by a “dead” fallback disk. The disk is reactived once the gravitational timescale becomes smaller than the
viscous one. From that point on, the two BHs merge on the very short timescale tGW, followed by an electromagnetic emission on the timescale tvisc.

7 Particles orbiting outside the tidal radius are more significantly affected by
the presence of the companion BH, whose tidal effects would cause their orbits
to be perturbed and intercept each other, in the absence of any form of viscosity
(Papaloizou & Pringle 1977).
8 We note that the presence of a disk around one of the BHs will generally
influence the angular momentum of the binary, and hence the merger timescale;
however, the effect is expected to be significant only if the mass of the disk is at
least comparable with that of the companion BH (Lodato et al. 2009).
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If the disk cools down and becomes neutral, the MHD turbulence 
becomes weak, and make a “dead disk” where angular momentum 
transform is inefficient.

• Perna+2016 propose the dead disk model for Fermi GBM event

Dead disk model

Perna+16



Perna’s model seems to misestimate or ignore  
   i) tidal torque from the companion  
  ii) condition for MRI activation/inactivation 
 iii) mass inflow due to separation decrease

Motivation

We examine the dead disc model, taking 
account of the above processes more carefully.
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Disk Evolution in BBH

Evolution of an Accretion Disc in BBHs 3

We can see tvis < tmer for rout/H ! 105, which is valid in all
the situations we usually expect. Thus, the disc forgets its
initial mass and/or radius due to viscous evolution before
the merger.

For the well-known solution of an accretion disc around
single BHs, the disc outer radius increases with time
as a result of the outward angular momentum transport
(Lynden-Bell & Pringle 1974). On the other hand, in a bi-
nary system, the angular momentum of the disc material
is carried to the companion by the tidal torque. Therefore,
the disc material can accrete onto the BH without increas-
ing the disc outer radius. Note that the tidal heating and
torque are effective only in very thin outer rim located just
outside rout (Ichikawa & Osaki 1994). Almost all the mass is
in the viscously heated region of r ≤ rout, and the mass that
expands beyond rout is expected to be negligible. Note that
the merging time tmer is unchanged by the angular momen-
tum transport from the disc to the companion if the mass
of the disc is much lower than that of the companion.

We consider evolution of the disc in a binary system,
assuming opacity of the disc is constant, κ = 0.4 cm2 g−1,
for simplicity. This treatment is not accurate very
much because opacity is a function of temperature
and density for T ! 105 K (e.g. Cannizzo & Wheeler
1984; Bell & Lin 1994; Zhu et al. 2009). However, it
enables us to make a fully analytic calculation with
an acceptable accuracy. The viscous heating and radia-
tive cooling rates are

Qvis =
9
8 νΣΩ

2
K, (3)

Qrad =
8σsbT4

3κΣ , (4)

respectively. The thermal balance, Qvis = Qrad, gives the disc
temperature as

T =
(

27kBκ
64σsbmp

)1/3
α1/3Ω1/3

K Σ
2/3, (5)

where we use c2
s = kBT/mp. The viscous time is shorter in

the inner region of the disc, where the steady state is realized
(e.g., Lynden-Bell & Pringle 1974). The mass accretion rate
onto the BH is estimated to be

Ṁ = 3πνΣ ∝ Σ5/3Ω−2/3
K . (6)

Since this mass accretion rate is constant for the inner re-
gion, the radial profile of the surface density is Σ ∝ r−3/5.
Using this profile, we estimate the disc mass to be

md =
∫ rout

rin
2πΣrdr ≈ 10π

7 Σoutr2
out, (7)

where Σout = Σ(r = rout). Note that treatment of rout (fixed as
asepRsep) is crucial for tracking the evolution of md because
it strongly depends on rout.

Ignoring wind mass loss, the disc mass decreases accord-
ing to Equation (6). Then, we can write the evolution of disc
mass as
dmd
dt
= −Ṁ = f (Rini, asep, MBH, α)m5/3

d , (8)

where we set Rsep ≈ Rini, since tvis ≪ tmer. Then, we can
integrate this equation and obtain

md = md,ini

(
t

tini

)−3/2
, (9)

Figure 2. The results of the numerical calculation of the diffu-
sion equation. The upper panel shows the evolution of disc mass.
The numerical calculation (solid line) matches the analytic model
(dotted line) for t " 5/(αΩK). The lower panel shows the radial
profile of the surface density. The vertical dotted line shows the
outer boundary. The profiles are single power-law for t " 1/(αΩK),
and the material does not accumulate near rout.

where md,ini is the disc mass at the time t = tini.
To confirm this scaling relation, we numerically solve

the diffusion equation of viscous disc evolution:

∂Σ

∂t
=

1
r
∂

∂r

[
1

dj/dr
∂

∂r

(
νΣr3 dΩ

dr

)]
, (10)

with a boundary condition Ṁ = 0 at r = rout. This treatment
corresponds to the assumption (introduced above) that the
tidal torque is effective only in the very thin outer rim just
outside r = rout (Ichikawa & Osaki 1994). That is, the disc
evolution at r < rout is governed by the viscous torque as
described by Equation (10), and the tidal torque is balanced
to the viscous torque just at r = rout. The disc material at
r = rout, receives the angular momentum from the material at
r < rout by the viscous torque. The same amount of angular
momentum is transported to the companion by the tidal
torque, which makes the angular momentum flux constant
at r = rout. Therefore, the disc material at r = rout does not
expand further. We initially put a gas ring of md,ini = 0.01M⊙
at r = 1011 cm. We use the reference parameter set (α = 0.1,
MBH = 30M⊙, Rini = 1012 cm, and asep = 0.3). We show
the results of the numerical calculation in Figure 2. The
upper panel shows the evolution of disc mass, which matches
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the situations we usually expect. Thus, the disc forgets its
initial mass and/or radius due to viscous evolution before
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Figure 2. The results of the numerical calculation of the diffu-
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The numerical calculation (solid line) matches the analytic model
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tidal torque is effective only in the very thin outer rim just
outside r = rout (Ichikawa & Osaki 1994). That is, the disc
evolution at r < rout is governed by the viscous torque as
described by Equation (10), and the tidal torque is balanced
to the viscous torque just at r = rout. The disc material at
r = rout, receives the angular momentum from the material at
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momentum is transported to the companion by the tidal
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at r = rout. Therefore, the disc material at r = rout does not
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We can see tvis < tmer for rout/H ! 105, which is valid in all
the situations we usually expect. Thus, the disc forgets its
initial mass and/or radius due to viscous evolution before
the merger.

For the well-known solution of an accretion disc around
single BHs, the disc outer radius increases with time
as a result of the outward angular momentum transport
(Lynden-Bell & Pringle 1974). On the other hand, in a bi-
nary system, the angular momentum of the disc material
is carried to the companion by the tidal torque. Therefore,
the disc material can accrete onto the BH without increas-
ing the disc outer radius. Note that the tidal heating and
torque are effective only in very thin outer rim located just
outside rout (Ichikawa & Osaki 1994). Almost all the mass is
in the viscously heated region of r ≤ rout, and the mass that
expands beyond rout is expected to be negligible. Note that
the merging time tmer is unchanged by the angular momen-
tum transport from the disc to the companion if the mass
of the disc is much lower than that of the companion.

We consider evolution of the disc in a binary system,
assuming opacity of the disc is constant, κ = 0.4 cm2 g−1,
for simplicity. This treatment is not accurate very
much because opacity is a function of temperature
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where Σout = Σ(r = rout). Note that treatment of rout (fixed as
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it strongly depends on rout.
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ing to Equation (6). Then, we can write the evolution of disc
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with a boundary condition Ṁ = 0 at r = rout. This treatment
corresponds to the assumption (introduced above) that the
tidal torque is effective only in the very thin outer rim just
outside r = rout (Ichikawa & Osaki 1994). That is, the disc
evolution at r < rout is governed by the viscous torque as
described by Equation (10), and the tidal torque is balanced
to the viscous torque just at r = rout. The disc material at
r = rout, receives the angular momentum from the material at
r < rout by the viscous torque. The same amount of angular
momentum is transported to the companion by the tidal
torque, which makes the angular momentum flux constant
at r = rout. Therefore, the disc material at r = rout does not
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the results of the numerical calculation in Figure 2. The
upper panel shows the evolution of disc mass, which matches
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We can see tvis < tmer for rout/H ! 105, which is valid in all
the situations we usually expect. Thus, the disc forgets its
initial mass and/or radius due to viscous evolution before
the merger.

For the well-known solution of an accretion disc around
single BHs, the disc outer radius increases with time
as a result of the outward angular momentum transport
(Lynden-Bell & Pringle 1974). On the other hand, in a bi-
nary system, the angular momentum of the disc material
is carried to the companion by the tidal torque. Therefore,
the disc material can accrete onto the BH without increas-
ing the disc outer radius. Note that the tidal heating and
torque are effective only in very thin outer rim located just
outside rout (Ichikawa & Osaki 1994). Almost all the mass is
in the viscously heated region of r ≤ rout, and the mass that
expands beyond rout is expected to be negligible. Note that
the merging time tmer is unchanged by the angular momen-
tum transport from the disc to the companion if the mass
of the disc is much lower than that of the companion.

We consider evolution of the disc in a binary system,
assuming opacity of the disc is constant, κ = 0.4 cm2 g−1,
for simplicity. This treatment is not accurate very
much because opacity is a function of temperature
and density for T ! 105 K (e.g. Cannizzo & Wheeler
1984; Bell & Lin 1994; Zhu et al. 2009). However, it
enables us to make a fully analytic calculation with
an acceptable accuracy. The viscous heating and radia-
tive cooling rates are

Qvis =
9
8 νΣΩ

2
K, (3)

Qrad =
8σsbT4

3κΣ , (4)

respectively. The thermal balance, Qvis = Qrad, gives the disc
temperature as

T =
(

27kBκ
64σsbmp

)1/3
α1/3Ω1/3

K Σ
2/3, (5)

where we use c2
s = kBT/mp. The viscous time is shorter in

the inner region of the disc, where the steady state is realized
(e.g., Lynden-Bell & Pringle 1974). The mass accretion rate
onto the BH is estimated to be

Ṁ = 3πνΣ ∝ Σ5/3Ω−2/3
K . (6)

Since this mass accretion rate is constant for the inner re-
gion, the radial profile of the surface density is Σ ∝ r−3/5.
Using this profile, we estimate the disc mass to be

md =
∫ rout

rin
2πΣrdr ≈ 10π

7 Σoutr2
out, (7)

where Σout = Σ(r = rout). Note that treatment of rout (fixed as
asepRsep) is crucial for tracking the evolution of md because
it strongly depends on rout.

Ignoring wind mass loss, the disc mass decreases accord-
ing to Equation (6). Then, we can write the evolution of disc
mass as
dmd
dt
= −Ṁ = f (Rini, asep, MBH, α)m5/3

d , (8)

where we set Rsep ≈ Rini, since tvis ≪ tmer. Then, we can
integrate this equation and obtain

md = md,ini

(
t

tini

)−3/2
, (9)

Figure 2. The results of the numerical calculation of the diffu-
sion equation. The upper panel shows the evolution of disc mass.
The numerical calculation (solid line) matches the analytic model
(dotted line) for t " 5/(αΩK). The lower panel shows the radial
profile of the surface density. The vertical dotted line shows the
outer boundary. The profiles are single power-law for t " 1/(αΩK),
and the material does not accumulate near rout.

where md,ini is the disc mass at the time t = tini.
To confirm this scaling relation, we numerically solve

the diffusion equation of viscous disc evolution:

∂Σ

∂t
=

1
r
∂

∂r

[
1

dj/dr
∂

∂r

(
νΣr3 dΩ

dr

)]
, (10)

with a boundary condition Ṁ = 0 at r = rout. This treatment
corresponds to the assumption (introduced above) that the
tidal torque is effective only in the very thin outer rim just
outside r = rout (Ichikawa & Osaki 1994). That is, the disc
evolution at r < rout is governed by the viscous torque as
described by Equation (10), and the tidal torque is balanced
to the viscous torque just at r = rout. The disc material at
r = rout, receives the angular momentum from the material at
r < rout by the viscous torque. The same amount of angular
momentum is transported to the companion by the tidal
torque, which makes the angular momentum flux constant
at r = rout. Therefore, the disc material at r = rout does not
expand further. We initially put a gas ring of md,ini = 0.01M⊙
at r = 1011 cm. We use the reference parameter set (α = 0.1,
MBH = 30M⊙, Rini = 1012 cm, and asep = 0.3). We show
the results of the numerical calculation in Figure 2. The
upper panel shows the evolution of disc mass, which matches
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our analytic model in later time. The lower panel shows the
radial profiles of the surface density at t = 0, t = 0.03/(αΩK),
t = 1/(αΩK), and t = 10/(αΩK), where we use ΩK at r = rout.
The disc material expands both inward and outward, and
reaches the outer boundary at t ∼ 1/(αΩK). After that, its
profile are expressed as a single power-law of r−3/5. This
means that the disc material does not accumulate near r =
rout, implying that the mass may be estimated by Equation
(7).

We use the thin and gas-pressure dominant
disc. This requires H/r < 1 and prad/pgas < 1, where

pgas = Σc2
s /(2H) and prad = aT4 (a is the radiative con-

stant). Our calculation in Figure 2 is inconsistent
with this treatment in the early phase where the disc
is very hot due to its high accretion rate. We obtain
H/r ≃ 1.3 and prad/pgas ≃ 3.4 × 106. However, these in-
consistency does not affect the following discussion
(see Section 4 for detail).

If MRI is always active, this scaling relation is appli-
cable all the time. Setting tini = tvis, we estimate the disc
mass at the time of merger and find that it is 10−11 times
lower than the initial disc mass, where we use the reference
parameter set used in Equation (1) and (rout/H) ∼ 100. Even
if md,ini is as massive as 100M⊙, the disc mass of the merg-

ing time is 10−9 M⊙. This is too low to produce energetic
electromagnetic counterparts of GW signals, which requires
md ∼ 10−5M⊙ (Murase et al. 2016; Lyutikov 2016).

2.2 Formation of a dead disc

The disc cools down as the disc becomes lighter, which
changes the disc state from fully-ionized plasma to almost
neutral. The MRI is inactive if the ionization degree suffi-
ciently decreases. The condition for MRI to be active is (e.g.,
Sano & Miyama 1999; Okuzumi & Hirose 2011; Fujii et al.
2014)

Λ =
v2
A
ηΩK

> 1, (11)

where Λ is the Elsasser number, vA is the Alfven ve-
locity, and η is the resistivity. The resistivity in accre-
tion discs, where the Ohmic dissipation is dominant, is
η = 234(T/1K)1/2 χ−1

e cm2s−1 (Blaes & Balbus 1994). Writing
v2
A = 2c2

s /βpl, the instability condition is

χe > χdead =
117T1/2 βplΩK

c2
s

≃ 9.9 × 10−10 β2T−1/2
3.5 M1/2

1.5 a−3/2
−0.5 R−3/2

12 , (12)

where χe = ne/n is the ionization degree (n = Σ/(2mpH)
is the total number density), βpl = 8πP/B2 is the plasma
beta (P is the gas pressure), T3.5 = T/(3000 K), and β2 =
βpl/(102). The MRI is active even for such a low ionization
degree.

We calculate the ionization degree in the accretion disc
by solving the Saha’s equation. Since BHs heavier than
∼ 10M⊙ are expected to form only under low-metalicity envi-
ronments (Abbott et al. 2016c), we consider pure hydrogen
discs. Then, the Saha’s equation is

χ2
e

1 − χe
=

1
n

(
2πmekBT

h2

)3/2
exp

(
− Ei

kBT

)
, (13)

where Ei = 13.6 eV. Since the ionization degree exponentially
decreases with temperature, the outer edge of the viscously
heated region (r = rout) is the first place which becomes
dead. When the dead region appears at r = rout, the mass
inflow to the inner region (r < rout) stops, which causes the
inner region of r < rout to cool down rapidly due to the lack
of heating source. Thus, the dead region propagates inward,
and the entire region of the disc becomes dead (formation of
a dead disc). Using equation (5), (12), and (13), we calculate
the critical temperature Tdead below which MRI is dead for
given βpl and Rini. We find that 2600 K < Tdead < 4000 K for

10 ≤ βpl ≤ 103 and 1011 cm < Rini < 3 × 1012 cm. The pa-
rameter dependence of Tdead is so weak that we can hereafter
estimate physical quantities by approximating Tdead ∼ 3000
K.

In reality, the disc temperature does not con-
tinuously approach Tdead from a higher temperature.
Instead, the thermal instability rapidly changes the
disc temperature (Lin et al. 1985; Cannizzo 1993;
Lasota 2001). The critical temperature for the ther-
mal instability is represented as (Lasota 2001)

TTI ≃ 3.9 × 104α−0.21
−1 M−0.02

1.5 a0.05
−0.5R0.05

12 K. (14)

Once the temperature becomes lower than TTI at the
outer edge of the viscously heated region, the disc
temperature immediately drops to T ∼ 3000 K be-
cause there is no stable solution below TTI. After the
thermal instability takes place at the outer edge, a
cooling wave propagates inward, and the entire re-
gion of the disc changes to a cold state T ∼ 3000 K
(Cannizzo 1993; Lasota 2001) .

Taking this thermal instability into account, the
mass of the dead disc is estimated to be

mdead ≈
80π
21

(
σsbmp
3kBκ

)1/2 !
"

T3
TI
αΩK

#
$
1/2

r2
out (15)

≃ 5.1 × 10−7T3/2
T,4.6α

−1/2
−1 M−1/4

1.5 R11/4
12 a11/4

−0.5 M⊙,

where TT,4.6 = TTI/(3.9 × 104 K) and we use Equation
(5) and (7). Note that this mdead is independent of
the disc initial condition, although the initial mass
md,ini appears in Equation (9). The initial condition
affects the time when the disc becomes dead, tdead.
For example, tdead ∼ 2 yr for the fiducial parameter

set shown in Figure 2. We can see tdead ∝ m2/3
d,ini from

Equation (9), and thus, tdead is much shorter than the
binary evolution time, tGW for usual situation. We
find that for our fiducial parameter set, mdead is lower than
the required mass for the luminous electromagnetic counter-
parts, ∼ 10−5 M⊙ (Murase et al. 2016; Lyutikov 2016). Since
mdead strongly depends on Rini, the dead disc for Rini ! 1013

cm can be massive enough to emit luminous electromag-
netic counterparts. While tmer is longer than Hubble time
for such a wide separation, rapid separation decrease might
occur by some mechanisms, such as friction by dense gas
(e.g., Bartos et al. 2016). The critical mass accretion rate
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our analytic model in later time. The lower panel shows the
radial profiles of the surface density at t = 0, t = 0.03/(αΩK),
t = 1/(αΩK), and t = 10/(αΩK), where we use ΩK at r = rout.
The disc material expands both inward and outward, and
reaches the outer boundary at t ∼ 1/(αΩK). After that, its
profile are expressed as a single power-law of r−3/5. This
means that the disc material does not accumulate near r =
rout, implying that the mass may be estimated by Equation
(7).

We use the thin and gas-pressure dominant
disc. This requires H/r < 1 and prad/pgas < 1, where

pgas = Σc2
s /(2H) and prad = aT4 (a is the radiative con-

stant). Our calculation in Figure 2 is inconsistent
with this treatment in the early phase where the disc
is very hot due to its high accretion rate. We obtain
H/r ≃ 1.3 and prad/pgas ≃ 3.4 × 106. However, these in-
consistency does not affect the following discussion
(see Section 4 for detail).

If MRI is always active, this scaling relation is appli-
cable all the time. Setting tini = tvis, we estimate the disc
mass at the time of merger and find that it is 10−11 times
lower than the initial disc mass, where we use the reference
parameter set used in Equation (1) and (rout/H) ∼ 100. Even
if md,ini is as massive as 100M⊙, the disc mass of the merg-

ing time is 10−9 M⊙. This is too low to produce energetic
electromagnetic counterparts of GW signals, which requires
md ∼ 10−5M⊙ (Murase et al. 2016; Lyutikov 2016).

2.2 Formation of a dead disc

The disc cools down as the disc becomes lighter, which
changes the disc state from fully-ionized plasma to almost
neutral. The MRI is inactive if the ionization degree suffi-
ciently decreases. The condition for MRI to be active is (e.g.,
Sano & Miyama 1999; Okuzumi & Hirose 2011; Fujii et al.
2014)

Λ =
v2
A
ηΩK

> 1, (11)

where Λ is the Elsasser number, vA is the Alfven ve-
locity, and η is the resistivity. The resistivity in accre-
tion discs, where the Ohmic dissipation is dominant, is
η = 234(T/1K)1/2 χ−1

e cm2s−1 (Blaes & Balbus 1994). Writing
v2
A = 2c2

s /βpl, the instability condition is

χe > χdead =
117T1/2 βplΩK

c2
s

≃ 9.9 × 10−10 β2T−1/2
3.5 M1/2

1.5 a−3/2
−0.5 R−3/2

12 , (12)

where χe = ne/n is the ionization degree (n = Σ/(2mpH)
is the total number density), βpl = 8πP/B2 is the plasma
beta (P is the gas pressure), T3.5 = T/(3000 K), and β2 =
βpl/(102). The MRI is active even for such a low ionization
degree.

We calculate the ionization degree in the accretion disc
by solving the Saha’s equation. Since BHs heavier than
∼ 10M⊙ are expected to form only under low-metalicity envi-
ronments (Abbott et al. 2016c), we consider pure hydrogen
discs. Then, the Saha’s equation is

χ2
e

1 − χe
=

1
n

(
2πmekBT

h2

)3/2
exp

(
− Ei

kBT

)
, (13)

where Ei = 13.6 eV. Since the ionization degree exponentially
decreases with temperature, the outer edge of the viscously
heated region (r = rout) is the first place which becomes
dead. When the dead region appears at r = rout, the mass
inflow to the inner region (r < rout) stops, which causes the
inner region of r < rout to cool down rapidly due to the lack
of heating source. Thus, the dead region propagates inward,
and the entire region of the disc becomes dead (formation of
a dead disc). Using equation (5), (12), and (13), we calculate
the critical temperature Tdead below which MRI is dead for
given βpl and Rini. We find that 2600 K < Tdead < 4000 K for

10 ≤ βpl ≤ 103 and 1011 cm < Rini < 3 × 1012 cm. The pa-
rameter dependence of Tdead is so weak that we can hereafter
estimate physical quantities by approximating Tdead ∼ 3000
K.

In reality, the disc temperature does not con-
tinuously approach Tdead from a higher temperature.
Instead, the thermal instability rapidly changes the
disc temperature (Lin et al. 1985; Cannizzo 1993;
Lasota 2001). The critical temperature for the ther-
mal instability is represented as (Lasota 2001)

TTI ≃ 3.9 × 104α−0.21
−1 M−0.02

1.5 a0.05
−0.5R0.05

12 K. (14)

Once the temperature becomes lower than TTI at the
outer edge of the viscously heated region, the disc
temperature immediately drops to T ∼ 3000 K be-
cause there is no stable solution below TTI. After the
thermal instability takes place at the outer edge, a
cooling wave propagates inward, and the entire re-
gion of the disc changes to a cold state T ∼ 3000 K
(Cannizzo 1993; Lasota 2001) .

Taking this thermal instability into account, the
mass of the dead disc is estimated to be

mdead ≈
80π
21

(
σsbmp
3kBκ

)1/2 !
"

T3
TI
αΩK

#
$
1/2

r2
out (15)

≃ 5.1 × 10−7T3/2
T,4.6α

−1/2
−1 M−1/4

1.5 R11/4
12 a11/4

−0.5 M⊙,

where TT,4.6 = TTI/(3.9 × 104 K) and we use Equation
(5) and (7). Note that this mdead is independent of
the disc initial condition, although the initial mass
md,ini appears in Equation (9). The initial condition
affects the time when the disc becomes dead, tdead.
For example, tdead ∼ 2 yr for the fiducial parameter

set shown in Figure 2. We can see tdead ∝ m2/3
d,ini from

Equation (9), and thus, tdead is much shorter than the
binary evolution time, tGW for usual situation. We
find that for our fiducial parameter set, mdead is lower than
the required mass for the luminous electromagnetic counter-
parts, ∼ 10−5 M⊙ (Murase et al. 2016; Lyutikov 2016). Since
mdead strongly depends on Rini, the dead disc for Rini ! 1013

cm can be massive enough to emit luminous electromag-
netic counterparts. While tmer is longer than Hubble time
for such a wide separation, rapid separation decrease might
occur by some mechanisms, such as friction by dense gas
(e.g., Bartos et al. 2016). The critical mass accretion rate
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our analytic model in later time. The lower panel shows the
radial profiles of the surface density at t = 0, t = 0.03/(αΩK),
t = 1/(αΩK), and t = 10/(αΩK), where we use ΩK at r = rout.
The disc material expands both inward and outward, and
reaches the outer boundary at t ∼ 1/(αΩK). After that, its
profile are expressed as a single power-law of r−3/5. This
means that the disc material does not accumulate near r =
rout, implying that the mass may be estimated by Equation
(7).

We use the thin and gas-pressure dominant
disc. This requires H/r < 1 and prad/pgas < 1, where

pgas = Σc2
s /(2H) and prad = aT4 (a is the radiative con-

stant). Our calculation in Figure 2 is inconsistent
with this treatment in the early phase where the disc
is very hot due to its high accretion rate. We obtain
H/r ≃ 1.3 and prad/pgas ≃ 3.4 × 106. However, these in-
consistency does not affect the following discussion
(see Section 4 for detail).

If MRI is always active, this scaling relation is appli-
cable all the time. Setting tini = tvis, we estimate the disc
mass at the time of merger and find that it is 10−11 times
lower than the initial disc mass, where we use the reference
parameter set used in Equation (1) and (rout/H) ∼ 100. Even
if md,ini is as massive as 100M⊙, the disc mass of the merg-

ing time is 10−9 M⊙. This is too low to produce energetic
electromagnetic counterparts of GW signals, which requires
md ∼ 10−5M⊙ (Murase et al. 2016; Lyutikov 2016).

2.2 Formation of a dead disc

The disc cools down as the disc becomes lighter, which
changes the disc state from fully-ionized plasma to almost
neutral. The MRI is inactive if the ionization degree suffi-
ciently decreases. The condition for MRI to be active is (e.g.,
Sano & Miyama 1999; Okuzumi & Hirose 2011; Fujii et al.
2014)

Λ =
v2
A
ηΩK

> 1, (11)

where Λ is the Elsasser number, vA is the Alfven ve-
locity, and η is the resistivity. The resistivity in accre-
tion discs, where the Ohmic dissipation is dominant, is
η = 234(T/1K)1/2 χ−1

e cm2s−1 (Blaes & Balbus 1994). Writing
v2
A = 2c2

s /βpl, the instability condition is

χe > χdead =
117T1/2 βplΩK

c2
s

≃ 9.9 × 10−10 β2T−1/2
3.5 M1/2

1.5 a−3/2
−0.5 R−3/2

12 , (12)

where χe = ne/n is the ionization degree (n = Σ/(2mpH)
is the total number density), βpl = 8πP/B2 is the plasma
beta (P is the gas pressure), T3.5 = T/(3000 K), and β2 =
βpl/(102). The MRI is active even for such a low ionization
degree.

We calculate the ionization degree in the accretion disc
by solving the Saha’s equation. Since BHs heavier than
∼ 10M⊙ are expected to form only under low-metalicity envi-
ronments (Abbott et al. 2016c), we consider pure hydrogen
discs. Then, the Saha’s equation is

χ2
e

1 − χe
=

1
n

(
2πmekBT

h2

)3/2
exp

(
− Ei

kBT

)
, (13)

where Ei = 13.6 eV. Since the ionization degree exponentially
decreases with temperature, the outer edge of the viscously
heated region (r = rout) is the first place which becomes
dead. When the dead region appears at r = rout, the mass
inflow to the inner region (r < rout) stops, which causes the
inner region of r < rout to cool down rapidly due to the lack
of heating source. Thus, the dead region propagates inward,
and the entire region of the disc becomes dead (formation of
a dead disc). Using equation (5), (12), and (13), we calculate
the critical temperature Tdead below which MRI is dead for
given βpl and Rini. We find that 2600 K < Tdead < 4000 K for

10 ≤ βpl ≤ 103 and 1011 cm < Rini < 3 × 1012 cm. The pa-
rameter dependence of Tdead is so weak that we can hereafter
estimate physical quantities by approximating Tdead ∼ 3000
K.

In reality, the disc temperature does not con-
tinuously approach Tdead from a higher temperature.
Instead, the thermal instability rapidly changes the
disc temperature (Lin et al. 1985; Cannizzo 1993;
Lasota 2001). The critical temperature for the ther-
mal instability is represented as (Lasota 2001)

TTI ≃ 3.9 × 104α−0.21
−1 M−0.02

1.5 a0.05
−0.5R0.05

12 K. (14)

Once the temperature becomes lower than TTI at the
outer edge of the viscously heated region, the disc
temperature immediately drops to T ∼ 3000 K be-
cause there is no stable solution below TTI. After the
thermal instability takes place at the outer edge, a
cooling wave propagates inward, and the entire re-
gion of the disc changes to a cold state T ∼ 3000 K
(Cannizzo 1993; Lasota 2001) .

Taking this thermal instability into account, the
mass of the dead disc is estimated to be

mdead ≈
80π
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(
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−0.5 M⊙,

where TT,4.6 = TTI/(3.9 × 104 K) and we use Equation
(5) and (7). Note that this mdead is independent of
the disc initial condition, although the initial mass
md,ini appears in Equation (9). The initial condition
affects the time when the disc becomes dead, tdead.
For example, tdead ∼ 2 yr for the fiducial parameter

set shown in Figure 2. We can see tdead ∝ m2/3
d,ini from

Equation (9), and thus, tdead is much shorter than the
binary evolution time, tGW for usual situation. We
find that for our fiducial parameter set, mdead is lower than
the required mass for the luminous electromagnetic counter-
parts, ∼ 10−5 M⊙ (Murase et al. 2016; Lyutikov 2016). Since
mdead strongly depends on Rini, the dead disc for Rini ! 1013

cm can be massive enough to emit luminous electromag-
netic counterparts. While tmer is longer than Hubble time
for such a wide separation, rapid separation decrease might
occur by some mechanisms, such as friction by dense gas
(e.g., Bartos et al. 2016). The critical mass accretion rate
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Disk Revival

• Separation decreases due to GW  
—> The dead disk shrinks due to tidal torque  
—> Disk heats up due to mass inflow  
—> Disk Revival: MRI becomes active (T > Tdead)
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Evolution of Revival Disk

Tidal torque controls Ṁ of revival disk 
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for MRI activation is

Ṁdead = 3πνΣout

= 8π
(

kBσsb
3κmp

)1/2
α1/2Ω−3/2

K T5/2
TI (16)

≃ 2.0 × 1019α1/2
−1 M−3/4

1.5 R9/4
12 a9/4

−0.5T5/2
T,4.6 g s−1,

where we use Equations (5) and (6). Note that this value
is several times higher than that in Lasota (2001)
mainly due to our simple treatment of the opacity.
Once the disc becomes dead, it remains until the binary
separation sufficiently decreases.

2.3 Revival of a dead disc

The binary separation, Rsep, decreases owing to emission of
gravitational waves even for the dead disc phase (phase II in
Figure 1). The decrease of the binary separation causes the
decrease of rout, beyond which the tidal torque is effective.
Then, the amount of gas in the outer rim (r > rout) increases.
The angular momentum of the gas in r > rout is transported
to the companion by the tidal torque. This induces the mass
inflow from the outer rim to the dead disc. Therefore, the
decrease of the binary separation provides the mass inflow
from the outer rim to the dead disc, which can reactivate
the MRI. For the standard discs, the critical accre-
tion rate for MRI activation for arbitrary radius r is
estimated to be

Ṁactv = 3πνΣ

= 8π
(

kBσsb
3κmp

)1/2
α1/2Ω−3/2

K T5/2
dead (17)

≃ 2.7 × 1015α1/2
−1 M−3/4

1.5 r9/4
11 T5/2

d,3.5 g s−1,

where r11 = r/(1011 cm) and we again use Equations
(5) and (6). Using Equations (3), (4), and (17), we
can obtain the relation between ṀMRI and Tdead as

3
8π ṀactvΩ2

K ∼
8σsbT4

dead
3κΣ . (18)

Note that the thermal instability does not affect
Ṁactv because the solution of the lower branch has
a stable solution up to T ∼ 6000 K > Tdead (Lasota
2001). Note also that Ṁactv is the increasing function
of radius r. In this situation, the inner region is al-
ways active for MRI whenever the outer region is
active as discussed below.

The decreasing rate of the separation is (e.g.
Shapiro & Teukolsky 1983)

vGW =
dRsep

dt
= −

128G3M3
BH

5c5R3
sep

. (19)

Assuming rout = asepRsep with constant asep, the decreasing
rate of the disc outer radius is written as asepvGW. We write

the surface density of the dead disc as Σ̃ ∼ mdead/(πr2
out).

Then, the mass inflow rate caused by the separation decrease
is estimated to be

ṀSD = −2πroutΣ̃asepvGW ∼ −
2mdeadvGW

Rsep
. (20)

This mass inflow releases the gravitational energy,

causing to heat up gas in the outermost region. The
heating rate by the mass inflow can be represented
as ∼ ηgṀSDΩ2

K (Kato et al. 2008), where ηg is the
heating efficiency of released gravitational energy.
The temperature at the outer most region is deter-
mined by

ηgṀSDΩ
2
K ∼

8σsbT4

3κΣ , (21)

Since Equations (18) and (21) are the same form if
we assume ηg = 3/(8π) 3, the condition Tdead > T is
identical to ṀSD > ṀMRI. When ṀSD becomes higher
than Ṁdead at rout, the outer edge of the dead disc be-
comes MRI active. The gas in the outermost MRI
active region inevitably falls to the inner region of
r < rout even if the inner region is dead, because the
viscous stress transports the angular momentum at
the active region (e.g. Zhu et al. 2010; Suzuki et al.
2010). This heats up gas at the inner dead region
with the heating rate ∼ ηgṀSDΩ2

K. This heating rate
is high enough to activate MRI in the inner dead region
because ṀSD > Ṁactv(rout) > Ṁactv(r), and the MRI active
region propagates inward with the local viscous time. There-
fore, once the mass inflow activates MRI at r ∼ rout, the
whole part of the disc inevitably becomes active, restarting
the mass accretion onto the BH. This disc “revival” happens
when ṀSD = Ṁactv(rout). The separation at that time is

Rrev =

⎡⎢⎢⎢⎢⎢⎣
32mdead

5πc5

( 3mp κ

kBσsbα

)1/2 (GMBH)15/4

a9/4
sep T5/2

dead

⎤⎥⎥⎥⎥⎥⎦
4/25

(22)

∼ 1.4 × 1011m4/25
−6.3α

−2/25
−1 a−9/25

−0.5 M3/5
1.5 T−2/5

d,3.5 cm,

where m−6.3 = mdead/(5 × 10−7M⊙). When the disc revives,
tvis ∼ tGW is satisfied because Ṁdead ∼ mdead/tvis and ṀSD ∼
mdead/tGW.

After the revival, the separation decreasing rate is likely
to control the mass accretion rate onto the BH as 4

ṀGW = −2πroutΣoutasepvGW = −
7mdvGW

5Rsep
, (23)

where we use the disc profile of the steady disc solution as
phase I, Σ ∝ r−3/5 and Σout = 7md/(10πr2

out) (see Subsection
2.1). The disc temperature is determined so that tGW ∼ tvis
at r = rout is satisfied. Using the relation dmd/dt = −ṀGW,
we can write dmd/dRsep = 7md/(5Rsep), which is integrated
as

md = mdead

(
Rsep
Rrev

)7/5
. (24)

Since the mass of the dead disc is conserved during phase II,
md = mdead for Rsep = Rrev. Also, we can integrate Equation
(19) and obtain

Rsep = Rrev

(
tmer − t

tmer − trev

)1/4
, (25)

3 the dependence of physical quantities, such as Rrev, on ηg is very
weak, and it does not affect our conclusion.
4 Two Ṁ introduced in this subsection is different: ṀSD is the
mass inflow rate from the outer rim to the dead disc and ṀGW is
the mass accretion rate from the revival disc to the central BH.
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Figure 3. The photon fluxes from the internal shocks for models
A, B, and C. The 1-scan sensitivity of MAXI GSC is also plotted.
It is found that all the models are detectable by MAXI GSC.

where trev is the time when the disc revives. The time from
the revival to the merger is very long,

tmer − trev =
5

512
c5

G3
R4

rev
M3

BH
(26)

∼ 1.3 × 1012m16/25
−6.3 α

−8/25
−1 a−36/25

−0.5 M−3/5
1.5 T−8/5

d,3.5 s.

Equation (24) and (25) lead to

md = mdead

(
tmer − t

tmer − trev

)7/20
. (27)

The mass accretion rate is

ṀGW =
7mdead

20(tmer − trev)

(
tmer − t

tmer − trev

)−13/20
. (28)

For t < tmer, ṀGW is almost constant,

Ṁrev ≃ 7mdead
20(tmer − trev)

(29)

∼ 2.6 × 1014m9/25
−6.3α

8/25
−1 a36/25

−0.5 M3/5
1.5 T8/5

d,3.5 g s−1.

This solution indicates that the tidal torque controls the
mass accretion rate such that Ṁrev ∼ Ṁactv, marginally keep-
ing steady accretion, as shown in Figure 1. This accretion
rate is so low that it is difficult to observe it. For t ! tmer, the
mass accretion rate increases with time as ∝ (tmer − t)−13/20.
This situation continues until α−1Ω−1

K > Rsep/vGW is satis-
fied, which is just before the merger (0.005 s for MBH = 30M⊙
and α = 0.1). After that, a smooth accretion flow no longer
exists, and a shocked-violent accretion is likely to take place
(Farris et al. 2015).

3 DETECTABILITY OF ELECTROMAGNETIC
COUNTERPARTS

The accretion rate can exceed the Eddington accretion
rate (at tjet in Figure 1). A relativistic jet is expected to
be launched from the accreting BH in such a situation
(Tchekhovskoy et al. 2011). We consider ṀGW ∼ Ṁjet ≡
10LEdd/c2 at the jet launching. We estimate the kinetic lu-
minosity of the jet to be Ljet ∼ ṀGWc2. The high-energy pho-
tons are produced in internal shocks within the jet, whose

bolometric luminosity and flux at the Earth are estimated
to be Lγ ∼ ηγLjet and Fγ = Lγ/(4πd2

L), respectively, where
ηγ is the radiative efficiency of the internal shocks and dL is
the luminosity distance. The observed time of these photons
after the jet launch is ∆tγ ∼ Rs/c ∼ 3 × 10−4M1.5 s, where Rs
is the Schwarzschild radius of the BH, so that these photons
arrive at the Earth before the GW signal.

The jet sweeps up gas surrounding the BBH and cre-
ates an external shock, which emits broadband photons, i.e.,
afterglow. The bolometric luminosity of the afterglow is es-
timated to be

LAG ∼
Ejet(t)
t − tjet

=

∫ t
tjet

Ljetdt ′

t − tjet
, (30)

where Ejet(t) is the time integrated energy and tjet is the jet
launching time. Since the jet luminosity for tjet < t < tmer is

almost constant 5, Ejet(t) is proportional to (t − tjet). Thus,
this luminosity is almost constant, LAG ∼ ṀGWc2 ∼ 10LEdd
for tjet < t < tmer. The photons of the afterglow arrive at the
Earth both before and after the GW signal. The duration of
the bright afterglow phase after the GW signal is

TAG ∼
RAG

2cΓ2
jet
=
!"
#

3Ejet(t = tmer)

4πmpc5nextΓ8
jet

$%
&
1/3

, (31)

where RAG is the deceleration radius, next is the density of
the surrounding gas, and Γjet is the Lorentz factor of the jet.

We discuss detectability of the emission from the jets
for three models: model A assumes massive stellar mass BHs
that corresponds to the system of GW150914 (Abbott et al.
2016a), model B assumes intermediate mass BHs (IMBH)
that are expected to exist in the center of star cluster (e.g.,
Gerssen et al. 2002), and model C assumes massive BHs
(MBH) that may be formed by collapse of supermassive
stars (e.g., Shapiro & Teukolsky 1983), for which MBH, Rini,
and resultant physical quantities are tabulated in Table 1.
The other parameters are fixed as α = 0.1, Tdead = 3000 K,
asep = 0.3, Γjet = 10, and next = 1 cm−3. The durations of the
jet launch and the afterglow are longer for higher MBH and
larger Rini, and LAG is proportional to MBH.

Figure 3 shows time evolution of the internal shock
emission flux in a certain energy band, Fband = ηbandFγ,
for models A, B, and C with the values of dL. We set
ηbandηγ ∼ 0.1 for simplicity. The 1-scan sensitivity of Gas
Slit Camera (GSC) on Monitor of All-sky X-ray Image
(MAXI) for an energy range 2 keV–20 keV is also plotted
(Negoro et al. 2016). Since it takes 40 s–150 s for the 1-scan
of MAXI, these jets are detectable if Fband at tmer − t = 40
s is higher than the sensitivity. We can see that the emis-
sions are marginally detectable for all the models. Since the
sensitivity of Swift Burst Alert Telescope (BAT) for 15 keV–
150 keV with exposure time of 40 s is comparable to that
of MAXI (Barthelmy et al. 2005), these jets are detectable
even if they mainly emit hard X-rays. This emission is a
unique electromagnetic counterpart of GWs from merging
BBHs in the sense that it can be detectable before the GW
signal and that the luminosity increases with time. However,

5 For tjet < t < tmer, ṀGW appears to be rapidly increasing in
Figure 1, while we can see ṀGW ≈ const if we plot ṀGW as a
function of (t − tjet).
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Figure 3. The photon fluxes from the internal shocks for models
A, B, and C. The 1-scan sensitivity of MAXI GSC is also plotted.
It is found that all the models are detectable by MAXI GSC.

where trev is the time when the disc revives. The time from
the revival to the merger is very long,

tmer − trev =
5

512
c5

G3
R4

rev
M3

BH
(26)

∼ 1.3 × 1012m16/25
−6.3 α

−8/25
−1 a−36/25

−0.5 M−3/5
1.5 T−8/5

d,3.5 s.

Equation (24) and (25) lead to

md = mdead

(
tmer − t

tmer − trev

)7/20
. (27)

The mass accretion rate is

ṀGW =
7mdead

20(tmer − trev)

(
tmer − t

tmer − trev

)−13/20
. (28)

For t < tmer, ṀGW is almost constant,

Ṁrev ≃ 7mdead
20(tmer − trev)

(29)

∼ 2.6 × 1014m9/25
−6.3α

8/25
−1 a36/25

−0.5 M3/5
1.5 T8/5

d,3.5 g s−1.

This solution indicates that the tidal torque controls the
mass accretion rate such that Ṁrev ∼ Ṁactv, marginally keep-
ing steady accretion, as shown in Figure 1. This accretion
rate is so low that it is difficult to observe it. For t ! tmer, the
mass accretion rate increases with time as ∝ (tmer − t)−13/20.
This situation continues until α−1Ω−1

K > Rsep/vGW is satis-
fied, which is just before the merger (0.005 s for MBH = 30M⊙
and α = 0.1). After that, a smooth accretion flow no longer
exists, and a shocked-violent accretion is likely to take place
(Farris et al. 2015).

3 DETECTABILITY OF ELECTROMAGNETIC
COUNTERPARTS

The accretion rate can exceed the Eddington accretion
rate (at tjet in Figure 1). A relativistic jet is expected to
be launched from the accreting BH in such a situation
(Tchekhovskoy et al. 2011). We consider ṀGW ∼ Ṁjet ≡
10LEdd/c2 at the jet launching. We estimate the kinetic lu-
minosity of the jet to be Ljet ∼ ṀGWc2. The high-energy pho-
tons are produced in internal shocks within the jet, whose

bolometric luminosity and flux at the Earth are estimated
to be Lγ ∼ ηγLjet and Fγ = Lγ/(4πd2

L), respectively, where
ηγ is the radiative efficiency of the internal shocks and dL is
the luminosity distance. The observed time of these photons
after the jet launch is ∆tγ ∼ Rs/c ∼ 3 × 10−4M1.5 s, where Rs
is the Schwarzschild radius of the BH, so that these photons
arrive at the Earth before the GW signal.

The jet sweeps up gas surrounding the BBH and cre-
ates an external shock, which emits broadband photons, i.e.,
afterglow. The bolometric luminosity of the afterglow is es-
timated to be

LAG ∼
Ejet(t)
t − tjet

=

∫ t
tjet

Ljetdt ′

t − tjet
, (30)

where Ejet(t) is the time integrated energy and tjet is the jet
launching time. Since the jet luminosity for tjet < t < tmer is

almost constant 5, Ejet(t) is proportional to (t − tjet). Thus,
this luminosity is almost constant, LAG ∼ ṀGWc2 ∼ 10LEdd
for tjet < t < tmer. The photons of the afterglow arrive at the
Earth both before and after the GW signal. The duration of
the bright afterglow phase after the GW signal is

TAG ∼
RAG

2cΓ2
jet
=
!"
#

3Ejet(t = tmer)

4πmpc5nextΓ8
jet

$%
&
1/3

, (31)

where RAG is the deceleration radius, next is the density of
the surrounding gas, and Γjet is the Lorentz factor of the jet.

We discuss detectability of the emission from the jets
for three models: model A assumes massive stellar mass BHs
that corresponds to the system of GW150914 (Abbott et al.
2016a), model B assumes intermediate mass BHs (IMBH)
that are expected to exist in the center of star cluster (e.g.,
Gerssen et al. 2002), and model C assumes massive BHs
(MBH) that may be formed by collapse of supermassive
stars (e.g., Shapiro & Teukolsky 1983), for which MBH, Rini,
and resultant physical quantities are tabulated in Table 1.
The other parameters are fixed as α = 0.1, Tdead = 3000 K,
asep = 0.3, Γjet = 10, and next = 1 cm−3. The durations of the
jet launch and the afterglow are longer for higher MBH and
larger Rini, and LAG is proportional to MBH.

Figure 3 shows time evolution of the internal shock
emission flux in a certain energy band, Fband = ηbandFγ,
for models A, B, and C with the values of dL. We set
ηbandηγ ∼ 0.1 for simplicity. The 1-scan sensitivity of Gas
Slit Camera (GSC) on Monitor of All-sky X-ray Image
(MAXI) for an energy range 2 keV–20 keV is also plotted
(Negoro et al. 2016). Since it takes 40 s–150 s for the 1-scan
of MAXI, these jets are detectable if Fband at tmer − t = 40
s is higher than the sensitivity. We can see that the emis-
sions are marginally detectable for all the models. Since the
sensitivity of Swift Burst Alert Telescope (BAT) for 15 keV–
150 keV with exposure time of 40 s is comparable to that
of MAXI (Barthelmy et al. 2005), these jets are detectable
even if they mainly emit hard X-rays. This emission is a
unique electromagnetic counterpart of GWs from merging
BBHs in the sense that it can be detectable before the GW
signal and that the luminosity increases with time. However,

5 For tjet < t < tmer, ṀGW appears to be rapidly increasing in
Figure 1, while we can see ṀGW ≈ const if we plot ṀGW as a
function of (t − tjet).
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for MRI activation is

Ṁdead = 3πνΣout

= 8π
(

kBσsb
3κmp

)1/2
α1/2Ω−3/2

K T5/2
TI (16)

≃ 2.0 × 1019α1/2
−1 M−3/4

1.5 R9/4
12 a9/4

−0.5T5/2
T,4.6 g s−1,

where we use Equations (5) and (6). Note that this value
is several times higher than that in Lasota (2001)
mainly due to our simple treatment of the opacity.
Once the disc becomes dead, it remains until the binary
separation sufficiently decreases.

2.3 Revival of a dead disc

The binary separation, Rsep, decreases owing to emission of
gravitational waves even for the dead disc phase (phase II in
Figure 1). The decrease of the binary separation causes the
decrease of rout, beyond which the tidal torque is effective.
Then, the amount of gas in the outer rim (r > rout) increases.
The angular momentum of the gas in r > rout is transported
to the companion by the tidal torque. This induces the mass
inflow from the outer rim to the dead disc. Therefore, the
decrease of the binary separation provides the mass inflow
from the outer rim to the dead disc, which can reactivate
the MRI. For the standard discs, the critical accre-
tion rate for MRI activation for arbitrary radius r is
estimated to be

Ṁactv = 3πνΣ

= 8π
(

kBσsb
3κmp

)1/2
α1/2Ω−3/2

K T5/2
dead (17)

≃ 2.7 × 1015α1/2
−1 M−3/4

1.5 r9/4
11 T5/2

d,3.5 g s−1,

where r11 = r/(1011 cm) and we again use Equations
(5) and (6). Using Equations (3), (4), and (17), we
can obtain the relation between ṀMRI and Tdead as

3
8π ṀactvΩ2

K ∼
8σsbT4

dead
3κΣ . (18)

Note that the thermal instability does not affect
Ṁactv because the solution of the lower branch has
a stable solution up to T ∼ 6000 K > Tdead (Lasota
2001). Note also that Ṁactv is the increasing function
of radius r. In this situation, the inner region is al-
ways active for MRI whenever the outer region is
active as discussed below.

The decreasing rate of the separation is (e.g.
Shapiro & Teukolsky 1983)

vGW =
dRsep

dt
= −

128G3M3
BH

5c5R3
sep

. (19)

Assuming rout = asepRsep with constant asep, the decreasing
rate of the disc outer radius is written as asepvGW. We write

the surface density of the dead disc as Σ̃ ∼ mdead/(πr2
out).

Then, the mass inflow rate caused by the separation decrease
is estimated to be

ṀSD = −2πroutΣ̃asepvGW ∼ −
2mdeadvGW

Rsep
. (20)

This mass inflow releases the gravitational energy,

causing to heat up gas in the outermost region. The
heating rate by the mass inflow can be represented
as ∼ ηgṀSDΩ2

K (Kato et al. 2008), where ηg is the
heating efficiency of released gravitational energy.
The temperature at the outer most region is deter-
mined by

ηgṀSDΩ
2
K ∼

8σsbT4

3κΣ , (21)

Since Equations (18) and (21) are the same form if
we assume ηg = 3/(8π) 3, the condition Tdead > T is
identical to ṀSD > ṀMRI. When ṀSD becomes higher
than Ṁdead at rout, the outer edge of the dead disc be-
comes MRI active. The gas in the outermost MRI
active region inevitably falls to the inner region of
r < rout even if the inner region is dead, because the
viscous stress transports the angular momentum at
the active region (e.g. Zhu et al. 2010; Suzuki et al.
2010). This heats up gas at the inner dead region
with the heating rate ∼ ηgṀSDΩ2

K. This heating rate
is high enough to activate MRI in the inner dead region
because ṀSD > Ṁactv(rout) > Ṁactv(r), and the MRI active
region propagates inward with the local viscous time. There-
fore, once the mass inflow activates MRI at r ∼ rout, the
whole part of the disc inevitably becomes active, restarting
the mass accretion onto the BH. This disc “revival” happens
when ṀSD = Ṁactv(rout). The separation at that time is

Rrev =

⎡⎢⎢⎢⎢⎢⎣
32mdead

5πc5

( 3mp κ

kBσsbα

)1/2 (GMBH)15/4

a9/4
sep T5/2

dead

⎤⎥⎥⎥⎥⎥⎦
4/25

(22)

∼ 1.4 × 1011m4/25
−6.3α

−2/25
−1 a−9/25

−0.5 M3/5
1.5 T−2/5

d,3.5 cm,

where m−6.3 = mdead/(5 × 10−7M⊙). When the disc revives,
tvis ∼ tGW is satisfied because Ṁdead ∼ mdead/tvis and ṀSD ∼
mdead/tGW.

After the revival, the separation decreasing rate is likely
to control the mass accretion rate onto the BH as 4

ṀGW = −2πroutΣoutasepvGW = −
7mdvGW

5Rsep
, (23)

where we use the disc profile of the steady disc solution as
phase I, Σ ∝ r−3/5 and Σout = 7md/(10πr2

out) (see Subsection
2.1). The disc temperature is determined so that tGW ∼ tvis
at r = rout is satisfied. Using the relation dmd/dt = −ṀGW,
we can write dmd/dRsep = 7md/(5Rsep), which is integrated
as

md = mdead

(
Rsep
Rrev

)7/5
. (24)

Since the mass of the dead disc is conserved during phase II,
md = mdead for Rsep = Rrev. Also, we can integrate Equation
(19) and obtain

Rsep = Rrev

(
tmer − t

tmer − trev

)1/4
, (25)

3 the dependence of physical quantities, such as Rrev, on ηg is very
weak, and it does not affect our conclusion.
4 Two Ṁ introduced in this subsection is different: ṀSD is the
mass inflow rate from the outer rim to the dead disc and ṀGW is
the mass accretion rate from the revival disc to the central BH.
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ṀGW increases with time and  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Jet launching

• High Accretion rate  
—> Geometrically thick  
 & strong magnetic field  
—> jet can be launched

• Jet launch condition: 
   ṀGW > Ṁjet ~ 10LEdd/c2

• Luminosity of Jets: 
                  Ljet ~ ṀGWc2

so that the unit time is� ´ -5 10 s5 for a :M10 black hole. We
embedded the weak poloidal magnetic field inside the torus.
The magnetic flux vector Af is given by rµfA , and the ratio
of the maximum b2 and pgas at the initial state is taken to be
100. In addition to the torus, we set the thin, unmagnetized hot
atmosphere. The density and gas pressure profile of the
atmosphere are given by ( )r r= - -r r10 4

0 g
1.5

and ( )r= - -p r r10gas
6

0 g
2.5.

In this paper, we perform three simulations. We set
( ) ( )*r = - -a, 10 g cm , 00

4 3 for run A, ( )- -10 g cm , 02 3 for
run B, and ( )- -10 g cm , 0.93754 3 for run C.

3. RESULTS

3.1. Overview of Simulations

In all simulations, the poloidal magnetic field lines in the
torus begin to be twisted due to the differential rotation after the
simulations start. The toroidal component of the magnetic fields
is enhanced. The angular momentum is transported as the
magnetorotational instability grows up inside the torus, leading
the mass accretion onto the black hole. Then, the mass
accretion rate suddenly increases and the quasi-steady accretion
disks are produced around the black hole.

Figure 1 shows the time evolution of the mass accretion rate
Ṁ . We find the rapid increase of the accretion rate at around
t = 0.06 s. Then, a part of the initial torus reaches the black
hole. At 2t 0.06 s, the accretion rate does not largely change,
although a transient amplification appears at t ∼ 0.17 s for run
B (see black line). Such an amplification is caused by the
accretion of the dense matter of the initial torus.

As shown in this figure, the mass accretion rate for run A
(red line) is much larger than that for runs B and C, since the
larger r0 is employed. The accretion rate highly exceeds the
critical rate, LEdd, so that the radiation-pressure-dominated disk
is produced and the strong jets are launched from the disk
surface via the radiation force. The overall structure of the
accretion disk and jets at t = 0.3 s is shown in Figure 2, where
the disk is presented as a blue–white–red volume rendering and
the elongated white–red regions indicate the jets. Thin lines are
magnetic field lines. We find that the toroidal magnetic fields
are amplified inside the disk. The disk-jet structure in this
model is roughly consistent with that by Ohsuga et al. (2009),
Takeuchi et al. (2010), Ohsuga & Mineshige (2011),

McKinney et al. (2014), Takahashi & Ohsuga (2015), and
Saḑowski et al. (2015). For run B and run C, the geometrical
thickness of the disks is relatively small (see below), since the
mass accretion rate is comparable to or slightly smaller than the
critical rate.

3.2. Structure of Overheated Region

We here take the time average between t = [0.1, 0.15] s for
run C (model a9r4), t = [0.25, 0.3] s for run A (model a0r2),
and t = [0.1, 0.15] s (model a0r4) as well as t = [0.25, 0.3] s
(model a0r4-2) for run B. The time-averaged mass accretion
rate of model a0r4 ( L0.73 E) is close to that of model a9r4
( L0.38 E), so that we can discuss the effect of the rotation of the
black hole by comparing these two models. Here, we note that
the inflow–outflow equilibrium is achieved within ~r r15 g in
two models (see, Table 1). On the other hand, we use models
a0r2 and a0r4-2 in order to investigate the difference of the disk
structure due to the difference of the mass accretion rate, since
the mass accretion rates are quite different, L4.3 E (a0r4-2) and

L430 E (a0r2). In both models, the flow is in inflow–outflow
equilibrium within ~r r20 g.

Figure 1. Time evolution of the mass accretion rate. Black, red, and blue lines
show results of runs A, B, and C, respectively. Arrows show the time interval
for the time average.

Figure 2. Global structure of radiation-dominated accretion disks near the
black hole at t = 0.3 s (run B). The figure shows the density (blue–white–red
volume rendering), the outflow velocity (white–red volume data), and the
magnetic field lines (gray lines).

Table 1
Typical Radius Obtained by Simulations

Model Inflow–Outflow Equilibrium rover rtr

a0r4 ∼15 ∼15(10) ∼30(9)
a9r4 ∼15 ∼15(10) ∼30(7)
a0r4-2 ∼20 ∼20(10) ∼30(9)
a0r2 ∼20 ∼7(2) ∼10(4)

Note. From left to right: the model, the size of the inflow–outflow equilibrium,
the equatorial radius of the overheated region, and the equatorial radius where
τeff = 1. The value denoted in parentheses is obtained by taking into account
the Compton cooling. These radii are denoted in units of rg.

3

The Astrophysical Journal, 826:23 (9pp), 2016 July 20 Takahashi et al.Takahashi & Ohsuga 16



Emission from Jet
・Internal Shock: 10% of Ljet goes to X-ray

・Afterglow: 10% of LAG goes to optical

6 S.S. Kimura, S.Z. Takahashi, & K. Toma

Figure 3. The photon fluxes from the internal shocks for models
A, B, and C. The 1-scan sensitivity of MAXI GSC is also plotted.
It is found that all the models are detectable by MAXI GSC.

where trev is the time when the disc revives. The time from
the revival to the merger is very long,

tmer − trev =
5

512
c5

G3
R4

rev
M3

BH
(26)

∼ 1.3 × 1012m16/25
−6.3 α

−8/25
−1 a−36/25
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1.5 T−8/5

d,3.5 s.

Equation (24) and (25) lead to

md = mdead

(
tmer − t

tmer − trev

)7/20
. (27)

The mass accretion rate is

ṀGW =
7mdead

20(tmer − trev)

(
tmer − t

tmer − trev

)−13/20
. (28)

For t < tmer, ṀGW is almost constant,

Ṁrev ≃ 7mdead
20(tmer − trev)

(29)

∼ 2.6 × 1014m9/25
−6.3α

8/25
−1 a36/25

−0.5 M3/5
1.5 T8/5

d,3.5 g s−1.

This solution indicates that the tidal torque controls the
mass accretion rate such that Ṁrev ∼ Ṁactv, marginally keep-
ing steady accretion, as shown in Figure 1. This accretion
rate is so low that it is difficult to observe it. For t ! tmer, the
mass accretion rate increases with time as ∝ (tmer − t)−13/20.
This situation continues until α−1Ω−1

K > Rsep/vGW is satis-
fied, which is just before the merger (0.005 s for MBH = 30M⊙
and α = 0.1). After that, a smooth accretion flow no longer
exists, and a shocked-violent accretion is likely to take place
(Farris et al. 2015).

3 DETECTABILITY OF ELECTROMAGNETIC
COUNTERPARTS

The accretion rate can exceed the Eddington accretion
rate (at tjet in Figure 1). A relativistic jet is expected to
be launched from the accreting BH in such a situation
(Tchekhovskoy et al. 2011). We consider ṀGW ∼ Ṁjet ≡
10LEdd/c2 at the jet launching. We estimate the kinetic lu-
minosity of the jet to be Ljet ∼ ṀGWc2. The high-energy pho-
tons are produced in internal shocks within the jet, whose

bolometric luminosity and flux at the Earth are estimated
to be Lγ ∼ ηγLjet and Fγ = Lγ/(4πd2

L), respectively, where
ηγ is the radiative efficiency of the internal shocks and dL is
the luminosity distance. The observed time of these photons
after the jet launch is ∆tγ ∼ Rs/c ∼ 3 × 10−4M1.5 s, where Rs
is the Schwarzschild radius of the BH, so that these photons
arrive at the Earth before the GW signal.

The jet sweeps up gas surrounding the BBH and cre-
ates an external shock, which emits broadband photons, i.e.,
afterglow. The bolometric luminosity of the afterglow is es-
timated to be

LAG ∼
Ejet(t)
t − tjet

=

∫ t
tjet

Ljetdt ′

t − tjet
, (30)

where Ejet(t) is the time integrated energy and tjet is the jet
launching time. Since the jet luminosity for tjet < t < tmer is

almost constant 5, Ejet(t) is proportional to (t − tjet). Thus,
this luminosity is almost constant, LAG ∼ ṀGWc2 ∼ 10LEdd
for tjet < t < tmer. The photons of the afterglow arrive at the
Earth both before and after the GW signal. The duration of
the bright afterglow phase after the GW signal is

TAG ∼
RAG

2cΓ2
jet
=
!"
#

3Ejet(t = tmer)

4πmpc5nextΓ8
jet

$%
&
1/3

, (31)

where RAG is the deceleration radius, next is the density of
the surrounding gas, and Γjet is the Lorentz factor of the jet.

We discuss detectability of the emission from the jets
for three models: model A assumes massive stellar mass BHs
that corresponds to the system of GW150914 (Abbott et al.
2016a), model B assumes intermediate mass BHs (IMBH)
that are expected to exist in the center of star cluster (e.g.,
Gerssen et al. 2002), and model C assumes massive BHs
(MBH) that may be formed by collapse of supermassive
stars (e.g., Shapiro & Teukolsky 1983), for which MBH, Rini,
and resultant physical quantities are tabulated in Table 1.
The other parameters are fixed as α = 0.1, Tdead = 3000 K,
asep = 0.3, Γjet = 10, and next = 1 cm−3. The durations of the
jet launch and the afterglow are longer for higher MBH and
larger Rini, and LAG is proportional to MBH.

Figure 3 shows time evolution of the internal shock
emission flux in a certain energy band, Fband = ηbandFγ,
for models A, B, and C with the values of dL. We set
ηbandηγ ∼ 0.1 for simplicity. The 1-scan sensitivity of Gas
Slit Camera (GSC) on Monitor of All-sky X-ray Image
(MAXI) for an energy range 2 keV–20 keV is also plotted
(Negoro et al. 2016). Since it takes 40 s–150 s for the 1-scan
of MAXI, these jets are detectable if Fband at tmer − t = 40
s is higher than the sensitivity. We can see that the emis-
sions are marginally detectable for all the models. Since the
sensitivity of Swift Burst Alert Telescope (BAT) for 15 keV–
150 keV with exposure time of 40 s is comparable to that
of MAXI (Barthelmy et al. 2005), these jets are detectable
even if they mainly emit hard X-rays. This emission is a
unique electromagnetic counterpart of GWs from merging
BBHs in the sense that it can be detectable before the GW
signal and that the luminosity increases with time. However,

5 For tjet < t < tmer, ṀGW appears to be rapidly increasing in
Figure 1, while we can see ṀGW ≈ const if we plot ṀGW as a
function of (t − tjet).
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Figure 3. The photon fluxes from the internal shocks for models
A, B, and C. The 1-scan sensitivity of MAXI GSC is also plotted.
It is found that all the models are detectable by MAXI GSC.

where trev is the time when the disc revives. The time from
the revival to the merger is very long,
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Equation (24) and (25) lead to

md = mdead

(
tmer − t
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)7/20
. (27)

The mass accretion rate is

ṀGW =
7mdead

20(tmer − trev)

(
tmer − t

tmer − trev

)−13/20
. (28)

For t < tmer, ṀGW is almost constant,

Ṁrev ≃ 7mdead
20(tmer − trev)

(29)

∼ 2.6 × 1014m9/25
−6.3α

8/25
−1 a36/25
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d,3.5 g s−1.

This solution indicates that the tidal torque controls the
mass accretion rate such that Ṁrev ∼ Ṁactv, marginally keep-
ing steady accretion, as shown in Figure 1. This accretion
rate is so low that it is difficult to observe it. For t ! tmer, the
mass accretion rate increases with time as ∝ (tmer − t)−13/20.
This situation continues until α−1Ω−1

K > Rsep/vGW is satis-
fied, which is just before the merger (0.005 s for MBH = 30M⊙
and α = 0.1). After that, a smooth accretion flow no longer
exists, and a shocked-violent accretion is likely to take place
(Farris et al. 2015).

3 DETECTABILITY OF ELECTROMAGNETIC
COUNTERPARTS

The accretion rate can exceed the Eddington accretion
rate (at tjet in Figure 1). A relativistic jet is expected to
be launched from the accreting BH in such a situation
(Tchekhovskoy et al. 2011). We consider ṀGW ∼ Ṁjet ≡
10LEdd/c2 at the jet launching. We estimate the kinetic lu-
minosity of the jet to be Ljet ∼ ṀGWc2. The high-energy pho-
tons are produced in internal shocks within the jet, whose

bolometric luminosity and flux at the Earth are estimated
to be Lγ ∼ ηγLjet and Fγ = Lγ/(4πd2

L), respectively, where
ηγ is the radiative efficiency of the internal shocks and dL is
the luminosity distance. The observed time of these photons
after the jet launch is ∆tγ ∼ Rs/c ∼ 3 × 10−4M1.5 s, where Rs
is the Schwarzschild radius of the BH, so that these photons
arrive at the Earth before the GW signal.

The jet sweeps up gas surrounding the BBH and cre-
ates an external shock, which emits broadband photons, i.e.,
afterglow. The bolometric luminosity of the afterglow is es-
timated to be

LAG ∼
Ejet(t)
t − tjet

=

∫ t
tjet

Ljetdt ′

t − tjet
, (30)

where Ejet(t) is the time integrated energy and tjet is the jet
launching time. Since the jet luminosity for tjet < t < tmer is

almost constant 5, Ejet(t) is proportional to (t − tjet). Thus,
this luminosity is almost constant, LAG ∼ ṀGWc2 ∼ 10LEdd
for tjet < t < tmer. The photons of the afterglow arrive at the
Earth both before and after the GW signal. The duration of
the bright afterglow phase after the GW signal is

TAG ∼
RAG

2cΓ2
jet
=
!"
#

3Ejet(t = tmer)

4πmpc5nextΓ8
jet

$%
&
1/3

, (31)

where RAG is the deceleration radius, next is the density of
the surrounding gas, and Γjet is the Lorentz factor of the jet.

We discuss detectability of the emission from the jets
for three models: model A assumes massive stellar mass BHs
that corresponds to the system of GW150914 (Abbott et al.
2016a), model B assumes intermediate mass BHs (IMBH)
that are expected to exist in the center of star cluster (e.g.,
Gerssen et al. 2002), and model C assumes massive BHs
(MBH) that may be formed by collapse of supermassive
stars (e.g., Shapiro & Teukolsky 1983), for which MBH, Rini,
and resultant physical quantities are tabulated in Table 1.
The other parameters are fixed as α = 0.1, Tdead = 3000 K,
asep = 0.3, Γjet = 10, and next = 1 cm−3. The durations of the
jet launch and the afterglow are longer for higher MBH and
larger Rini, and LAG is proportional to MBH.

Figure 3 shows time evolution of the internal shock
emission flux in a certain energy band, Fband = ηbandFγ,
for models A, B, and C with the values of dL. We set
ηbandηγ ∼ 0.1 for simplicity. The 1-scan sensitivity of Gas
Slit Camera(GSC) on Monitor of All-sky X-ray Image
(MAXI) for an energy range 2 keV–20 keV is also plotted
(Negoro et al. 2016). Since it takes 40 s–150 s for the 1-scan
of MAXI, these jets are detectable if Fband at tmer − t = 40
s is higher than the sensitivity. We can see that the emis-
sions are marginally detectable for all the models. Since the
sensitivity of Swift Burst Alert Telescope (BAT) for 15 keV–
150 keV with exposure time of 40 s is comparable to that
of MAXI (Barthelmy et al. 2005), these jets are detectable
even if they mainly emit hard X-rays. This emission is a
unique electromagnetic counterpart of GWs from merging
BBHs in the sense that it can be detectable before the GW
signal and that the luminosity increases with time. However,

5 For tjet < t < tmer, ṀGW appears to be rapidly increasing in
Figure 1, while we can see ṀGW ≈ const if we plot ṀGW as a
function of (t − tjet).
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estimate with simplest modeling

Fband ~  0.1 Ljet / (4 π dL2)

Detectable by optical followup
and/or X-ray monitoring

J-GEM, Pan-STARRS

MAXI, SWIFT
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Table 1. Parameters and physical quantities related to the electromagnetic counterparts from jets

model MBH[M⊙] Rini [cm] (tmer − tjet) [s] LAG [erg s−1] TAG [s] dL, limit [Mpc]

A 30 3 × 1012 3.0×105 3.8×1040 1.5×103 19
B 103 3 × 1013 4.7×106 1.3×1042 1.0×104 1.1×102

C 105 1015 4.36×108 1.3×1044 2.1×105 1.1×103

the luminosity and total energy are too low to explain GRBs
or the GBM event (Connaughton et al. 2016).

The optical follow-up surveys for GW counterparts,
such as the Pan-STARRS1 and the Japanese collaboration
for Gravitational wave ElectroMagnetic follow-up (J-GEM),
have a sensitivity of 19–21 magnitude (Smartt et al. 2016;
Morokuma et al. 2016). Assuming 10 % of LAG is in the op-
tical range, we calculate the distance of detection limit for
the afterglow, dL,lim, whose values are tabulated in Table 1.
While the afterglow is fainter than the internal shock
emission, the optical follow-up surveys of afterglows
can detect comparable or more distant events than
the X-ray monitoring systems owing to the good sen-
sitivity. However, dL,lim for model A is shorter than the
distance of the observed GW events (Abbott et al. 2016a,b).
Although dL,lim is larger for IMBHs and MBHs, we do not
discuss the detection probability because the merger rates
of IMBH binaries and MBH binaries are very uncertain.

4 SUMMARY & DISCUSSION

We study evolution of an accretion disc in BBH systems
and propose an evolutionary track of the disc, which leads
to different conclusion from the previous work (Perna et al.
2016). At first, the disc viscously expands outward but the
companion prevents the disc from expandig beyond rout due
to the tidal torque. The evolution of viscous disc results in
the decrease of the disc mass and the temperature. When
the disc sufficiently cools down (typically less than 3000 K),
the dead disc forms because MRI becomes inactive. Since
the thermal instability causes the rapid drop of the
disc temperature, the disk becomes dead when the
temperature becomes less than a few tens of thou-
sands K. This dead disc remains until the binary
separation sufficiently decreases. As the binary sepa-
ration decreases, the position at which the tidal torque is
effective moves inward, and the mass of the outer rim in-
creases. Then, the angular momentum is transported by the
tidal torque, which induces the mass inflow from the outer
rim to the dead disc. When the mass inflow by the tidal
torque becomes higher than Ṁdead, the accretion heating ac-
tivates MRI, restarting the mass accretion from the disc to
the central black hole (the disc revival). This disc revival typ-
ically happens tens of thousands years before the merger
event. The evolution of the revival disc is determined by the
tidal torque, keeping tvis ∼ tGW. The mass accretion rate of
the revival disc increases with time.

In the late phase of the revival disc evolution, the mass
accretion rate can exceed Eddington rate, and a relativistic
jet is expected to be launched. We estimate the electromag-
netic flux from the jet and discuss its detectability. Since the
jet luminosity is increasing with time, the X-ray flux from

the internal shock increases with time. This flux can be de-
tectable before the merger event. The afterglow can typically
be luminous a few thousands seconds after the merger.
The estimated flux from the jet is too low to explain the
GBM event, but detectable by the optical transient surveys
or X-ray monitoring systems if the merger events happen in
the local universe (! 10 Mpc) or if BHs are very massive
(∼ 105 M⊙).

In Section 2.1, the disc physical quantities
is mildly inconsistent with the thin-disc approx-
imation in the early phase. When H/r > 1 and
prad > pgas, we should use the slim disc solution
that has different features from the standard thin
disc (Abramowicz et al. 1988; Cannizzo & Gehrels
2009). In this regime, the disc mass decreases
more rapidly than the standard thin disc, which
shorten tdead. When the mass accretion rate be-
comes lower than the Eddington rate, the disc state
changes from the slim disc to the thin and radiation-
pressure dominant disc (Abramowicz et al. 1988;
Kato et al. 2008). This regime is thermally unsta-
ble (Shakura & Sunyaev 1976). Some models with
a different expression of the stress can avoid this
instability (Sakimoto & Coroniti 1981; Hirose et al.
2009). However, the most recent simulation with a
wide calculation range and a better radiative trans-
fer scheme shows that the solution is thermally un-
stable (Jiang et al. 2013), it is unlikely to be real-
ized. Thus, the disc state is expected to change to
the thin and gas-pressure dominant disc soon after
the slim disc regime ends. Since Ṁdead is much less
than the Eddington rate, the thin and gas-pressure
dominant disc takes place whenever the disc be-
comes dead. Therefore, even if we addressed the disc
evolution discussed above, our estimate in Section 2
would not change except that tdead would be short-
ened. The shortened tdead could not affect our state-
ment that the disc evolution time is much shorter
than the decreasing time of binary separation.

In Section 2.2, we ignore ionization by cosmic rays
(CRs), although its effect for accretion process is still un-
der debate (e.g., Bai & Stone 2013). The CRs ionize the
disc surface layer of Σz =

∫ ∞
z ρ(z)dz ! 100 g cm−2, where

ρ(z) is the density (Umebayashi & Nakano 1981). Assum-
ing the density of CRs is the same as that in the interstel-
lar medium of the Galaxy, we write the ionization rate as
ζcr ∼ 10−17 cm3 s−1 (Umebayashi & Nakano 1981). The equi-
librium condition between the ionization by CRs and recom-
bination is ζcrnH = βrecnenp, where βrec = 6.22 × 10−13T−3/4

3.5
is the radiative recombination rate (the UMIST database,
McElroy et al. 2013). Assuming nH = Σ/(2mpH), ne = np,
and ne = χenH , we obtain the equilibrium ionization degree
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Figure 3. The photon fluxes from the internal shocks for models
A, B, and C. The 1-scan sensitivity of MAXI GSC is also plotted.
It is found that all the models are detectable by MAXI GSC.

where trev is the time when the disc revives. The time from
the revival to the merger is very long,

tmer − trev =
5

512
c5

G3
R4

rev
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BH
(26)
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Equation (24) and (25) lead to

md = mdead

(
tmer − t

tmer − trev

)7/20
. (27)

The mass accretion rate is

ṀGW =
7mdead

20(tmer − trev)

(
tmer − t

tmer − trev

)−13/20
. (28)

For t < tmer, ṀGW is almost constant,

Ṁrev ≃ 7mdead
20(tmer − trev)

(29)

∼ 2.6 × 1014m9/25
−6.3α

8/25
−1 a36/25

−0.5 M3/5
1.5 T8/5

d,3.5 g s−1.

This solution indicates that the tidal torque controls the
mass accretion rate such that Ṁrev ∼ Ṁactv, marginally keep-
ing steady accretion, as shown in Figure 1. This accretion
rate is so low that it is difficult to observe it. For t ! tmer, the
mass accretion rate increases with time as ∝ (tmer − t)−13/20.
This situation continues until α−1Ω−1

K > Rsep/vGW is satis-
fied, which is just before the merger (0.005 s for MBH = 30M⊙
and α = 0.1). After that, a smooth accretion flow no longer
exists, and a shocked-violent accretion is likely to take place
(Farris et al. 2015).

3 DETECTABILITY OF ELECTROMAGNETIC
COUNTERPARTS

The accretion rate can exceed the Eddington accretion
rate (at tjet in Figure 1). A relativistic jet is expected to
be launched from the accreting BH in such a situation
(Tchekhovskoy et al. 2011). We consider ṀGW ∼ Ṁjet ≡
10LEdd/c2 at the jet launching. We estimate the kinetic lu-
minosity of the jet to be Ljet ∼ ṀGWc2. The high-energy pho-
tons are produced in internal shocks within the jet, whose

bolometric luminosity and flux at the Earth are estimated
to be Lγ ∼ ηγLjet and Fγ = Lγ/(4πd2

L), respectively, where
ηγ is the radiative efficiency of the internal shocks and dL is
the luminosity distance. The observed time of these photons
after the jet launch is ∆tγ ∼ Rs/c ∼ 3 × 10−4M1.5 s, where Rs
is the Schwarzschild radius of the BH, so that these photons
arrive at the Earth before the GW signal.

The jet sweeps up gas surrounding the BBH and cre-
ates an external shock, which emits broadband photons, i.e.,
afterglow. The bolometric luminosity of the afterglow is es-
timated to be

LAG ∼
Ejet(t)
t − tjet

=

∫ t
tjet

Ljetdt ′

t − tjet
, (30)

where Ejet(t) is the time integrated energy and tjet is the jet
launching time. Since the jet luminosity for tjet < t < tmer is

almost constant 5, Ejet(t) is proportional to (t − tjet). Thus,
this luminosity is almost constant, LAG ∼ ṀGWc2 ∼ 10LEdd
for tjet < t < tmer. The photons of the afterglow arrive at the
Earth both before and after the GW signal. The duration of
the bright afterglow phase after the GW signal is

TAG ∼
RAG

2cΓ2
jet
=
!"
#

3Ejet(t = tmer)

4πmpc5nextΓ8
jet

$%
&
1/3

, (31)

where RAG is the deceleration radius, next is the density of
the surrounding gas, and Γjet is the Lorentz factor of the jet.

We discuss detectability of the emission from the jets
for three models: model A assumes massive stellar mass BHs
that corresponds to the system of GW150914 (Abbott et al.
2016a), model B assumes intermediate mass BHs (IMBH)
that are expected to exist in the center of star cluster (e.g.,
Gerssen et al. 2002), and model C assumes massive BHs
(MBH) that may be formed by collapse of supermassive
stars (e.g., Shapiro & Teukolsky 1983), for which MBH, Rini,
and resultant physical quantities are tabulated in Table 1.
The other parameters are fixed as α = 0.1, Tdead = 3000 K,
asep = 0.3, Γjet = 10, and next = 1 cm−3. The durations of the
jet launch and the afterglow are longer for higher MBH and
larger Rini, and LAG is proportional to MBH.

Figure 3 shows time evolution of the internal shock
emission flux in a certain energy band, Fband = ηbandFγ,
for models A, B, and C with the values of dL. We set
ηbandηγ ∼ 0.1 for simplicity. The 1-scan sensitivity of Gas
Slit Camera (GSC) on Monitor of All-sky X-ray Image
(MAXI) for an energy range 2 keV–20 keV is also plotted
(Negoro et al. 2016). Since it takes 40 s–150 s for the 1-scan
of MAXI, these jets are detectable if Fband at tmer − t = 40
s is higher than the sensitivity. We can see that the emis-
sions are marginally detectable for all the models. Since the
sensitivity of Swift Burst Alert Telescope (BAT) for 15 keV–
150 keV with exposure time of 40 s is comparable to that
of MAXI (Barthelmy et al. 2005), these jets are detectable
even if they mainly emit hard X-rays. This emission is a
unique electromagnetic counterpart of GWs from merging
BBHs in the sense that it can be detectable before the GW
signal and that the luminosity increases with time. However,

5 For tjet < t < tmer, ṀGW appears to be rapidly increasing in
Figure 1, while we can see ṀGW ≈ const if we plot ṀGW as a
function of (t − tjet).
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(e.g. Cannizzo et al. 1990; Menou et al. 2001; Perna et al.
2016). The tidal torque also causes to heat up the
outer edge of the dead disc in the late phase of
evolution, which can eventually reactivates MRI.
Another important point is the critical ionization
degree for MRI activation. MRI is usually active
for very low ionization degree (e.g. Gammie 1996;
Sano & Miyama 1999), and the critical temperature
for MRI activation is very low, typically less than a
few thousands K. This causes the MRI activation
tens of thousands years before the merger.

In this paper, we improve the dead disc model and pro-
pose another scenario, which predicts electromagnetic coun-
terparts of GWs whose luminosity increases with time. In
Figure 1, we show the schematic evolutionary tracks of the
disc mass, the mass accretion rate, and the binary separa-
tion. The disc experiences three phases. At first, the disc
forgets its initial condition through viscous evolution. Then,
the disc mass and the accretion rate decrease with radia-
tive cooling, which leads to decrease of the ionization degree
(phase I). This eventually suppresses MRI, forming a dead
disc that remains around the BH until the binary separation
sufficiently decreases (phase II). Then, the heating by the
tidal torque from the companion becomes effective, which
reactivates MRI in the entire region of the disc, restarting ac-
cretion onto the BH (phase III-i). This disc“revival”happens
many years before the merger 2. We describe this model in
detail in Section 2. The mass accretion rate increases as the
separation decreases, and a relativistic jet could be launched
owing to high accretion rate (phase III-ii). We estimate flux
of electromagnetic emission from the jet and discuss its de-
tectability in Section 3. Section 4 is devoted to summary
and discussion.

2 EVOLUTION OF A DISC IN BBH SYSTEMS

2.1 Initial evolution

We consider an equal-mass binary of initial separation Rini
and mass of BHs MBH, where the separation should be
small such that the binary can merge in the Hubble time.
Some mechanisms are proposed to realize this situation,
such as the common envelope evolution (Kinugawa et al.
2014; Belczynski et al. 2016) and/or the friction by dense gas
(Bartos et al. 2016). We focus on an accretion disc around
one of the BHs. We do not discuss the origin of this disc,
which might be fallback material of supernova explosion
(e.g., Perna et al. 2014) or a tidally disrupted object (e.g.,
Seto & Muto 2011).

Consider a gas ring around a BH. The ring expands
both inward and outward due to the viscous diffusion to
become an accretion disc (e.g., Pringle 1981). When the
outer radius of the disc, rout, becomes close to Rini, the tidal
torque from the companion prevents the disc from expanding
outward (Papaloizou & Pringle 1977; Artymowicz & Lubow

2 Perna et al. (2016) mentioned a low-luminosity and long-lasting
transient preceding the merger by the MRI reactivation due to
photons from the outer rim, although they did not discuss it in
detail.
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Figure 1. Schematic evolutionary tracks of the disc mass (red),
the mass accretion rate (blue), and the binary separation (ma-
genta). Note that this is double logarithmic plot and that phase
II is much longer than the other phases.

1994; Ichikawa & Osaki 1994). The balance between the vis-
cous torque and tidal torque determines the disc radius, and
it is expected that the outer radius of the disc is fixed at
rout ∼ asepRini, where we introduce a separation parameter
asep. We fix asep = 0.3 in this paper for simplicity (Paczynski
1977). The disc expands to rout in the viscous time (e.g.
Pringle 1981)

tvis =
1
αΩK

( rout
H

)2

∼ 2.6 × 104a3/2
−0.5R3/2

12 M−1/2
1.5 α

−1
−1

( rout
H

)2
s, (1)

where ΩK =
√

GMBH/r3 is the Keplerian angular velocity,
H = cs/ΩK is the scale height (cs is the sound speed),
rout ≃ asepRini, M1.5 = MBH/30M⊙, α−1 = α/0.1, R12 =
Rini/(1012 cm), and a−0.5 = asep/0.3. We use the alpha pre-

scription for viscosity, ν = αc2
s /ΩK. On the other hand, the

time scale of GW inspiral is (e.g. Shapiro & Teukolsky 1983)

tmer =
5

512
c5

G3
R4

ini
M3

BH
∼ 3.8 × 1015R4

12M−3
1.5 s. (2)
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Summary
• Detection of GW reveals existence of BBHs.
• BBHs can emit EM radiation when they are born or 

they merge.
• Sub-energetic SNe from newborn BBHs are  

detectable by current optical transient surveys.
• Dead disk revives ~105 years before the merger, 

and  it produces not GRB like burst but weak 
transient of longer duration.

〜
〜

＞

GW 

2

Figure 1. (a) Schematic picture of a BBH in a failed SN
ejecta. The primary BH accretes part of the ejecta through
an accretion column, and makes a disk around the primary
BH. To clarify the accretion stream geometry, the outflow is
not shown. (b) Schematic picture of the ejecta of an outflow-
driven SN. The accreting material forms a disk around the
primary BH, and produces a wide-angle outflow because of
its high accretion rate. The kinetic energy of the outflow is
converted into the internal energy of the ejecta, which results
in a sub-Energetic SN.

the BH is

vorb=

√
GM2

∗
(MBH +M∗)a

(1)

≃ 4.5× 107M1/2
1.5 a−1/2

12 (1 + q0)
−1/2 cm s−1.

When the secondary collapses to a BH, its outer enve-
lope of mass mej ∼ 0.01M⊙ can be ejected. We assume
that the ejecta velocity is the escape velocity,

vej,i ≈
√

2M∗
R∗

≃ 2.8× 108M1/2
1.5 R−1/2

11 cm s−1. (2)

Note that if q ∼ 1, vorb/vej ∼
√

R∗/a < 1 is always
satisfied. Hereafter, we assume q = 1 for simplicity.
The explosion energy is then

Eej,i = mejv
2
ej/2 ≃ 7.9× 1047M1.5R

−1
11 m−2 erg. (3)

This explosion energy is comparable to the gravitational
energy loss due to the neutrino radiation (Nadezhin
1980). We assume , following Arnett (1982), that
the ejecta is in homologous expansion, where the veloc-
ity profile inside the ejecta is written as v(R) = R/t.
The density of the ejecta at radius R can be written as

ρej,m ≈ (3− δ)mej

4πR3
ej,m

(
R

Rej,m

)−3

, (4)

where Rej,m ≈ vej,it is the ejecta radius and the
parameter δ = 0–1 is often used in the literature
(Kasen & Bildsten 2010; Metzger et al. 2014). We use
δ = 0 for simplicity, which leads to

ρej,m ≈ 3mej

4πa3

(
t

tarr

)−3

, (5)

where tarr = a/vej,i is the arrival time of the ejecta at the
primary position (t = 0 is the time when the secondary
collapses).
After t > tarr, the primary starts to accrete the ejecta.

Assuming that the sound speed in the ejecta is small due
to adiabatic expansion, the accretion radius is estimated
to be (Shima et al. 1985; Edgar 2004)

Racc =
GMBH

v2a + v2orb
, (6)

where va = a/t. Initially, since Racc ∼ qR∗/2 < a
is satisfied for va ≈ a/tarr > vorb, we can estimate
the accretion rate to be a Bondi-Hoyle-Lyttleton rate
(Hoyle & Lyttleton 1939; Bondi 1952; Shima et al. 1985;
Edgar 2004)

ṀB-H ≈ 4πR2
accρej,m

√
v2a + v2orb. (7)

For va > vorb, this mass accretion rate is constant in
time and is estimated to be

ṀB-H,i ≃ 4.2× 1025M1/2
1.5 a−3

12 R
3/2
11 m−2 g s−1. (8)

This accretion rate is much higher than the Eddington
accretion rate, and continues until va = vorb is reached.
The time when this occurs is estimated to be

tbr =
a

vorb
≃ 2.2× 104M−1/2

1.5 a3/212 . (9)

After this time, the accretion rate starts to decrease
as ṀB-H ∝ ρej,mv3orb ∝ t−3. The total accreted mass,
Macc ≈ ṀB-Htbr ≃ 4.7× 10−4M⊙, is much smaller than
mej.
The accreting gas, due to the orbital motion, forms

a disk surrounding the primary BH (de Val-Borro et al.
2009; Huarte-Espinosa et al. 2013). The accretion disk
produces a powerful outflow when the mass accretion
rate is higher than the Eddington rate (Ohsuga et al.
2005; Sa̧dowski et al. 2014; Jiang et al. 2014). Since the
material accretes onto the BH through the accretion col-
umn behind the BH, the accretion disk is surrounded
and covered by the ejecta before the outflow is produced
(see the panel (a) of Figure 1). Thus, the outflow is, at
least initially, confined in the ejecta. We assume that
the outflow is almost isotropic, a fraction fw = 0.3f0.5 of
the accreted material going into the outflow, whose ve-
locity is approximately constant, vw = 1010v10 cm s−1.
These values of fw and vw is consistent with the
recent radiation magnetohydrodynamic calcula-
tions of super-Eddington accretion flows (e.g.
Takahashi & Ohsuga 2015), although these val-
ues depend on the magnetic field configuration.
Then, the luminosity of the outflow is

Lw ≈ 1

2
fwṀB-Hv

2
w. (10)


