相対論的現象で探る宇宙の進化IV 3/23@Okinawa

Summary of SNR 1181 and a White Dwarf in its center

Takatoshi Ko (RESCEU)

arXiv: 2304.14669 arXiv: 2401.12487

Coworkers;

A. Bamba, B. Hatsukade, D. Tsuna, H. Suzuki, H. Uchida, K. Fujisawa,

K. Hotokezaka, K. Kashiyama, K. Maeda, K. Taguchi, K. Uno, T. Shigeyama,

T. Tanaka, Y. Shiraishi

(In alphabetical order)

Self-Introduction

- PhD student in University of Tokyo
- JRA fellow in RIKEN
- Interests
 - Type Iax SNR 1181 (Today's topic)
 - interaction-powered SN

https://sites.google.com/view/takatoshi-ko/home

Many historical SNR are identified

Name	Historical Record	SN Remnant	SN Type	Note
SN 185	後漢書 巻十二 (Book of Later Han vol 12) "中平二年十月癸亥, <mark>客星 (guest star)</mark> 出南門中, 大如半筵,五色喜怒稍小,至後年六月消"	RCW 86	la?	
SN 393	宋書 巻二十五(Song Shu vol 25) "太元十八年二月、有 <mark>客星</mark> 在尾中、至九月乃滅"	RX J1713.7-3946	ll or lb	
SN 1006	Sources in China, Japan, Iraq, Egypt, Europe	SN 1006	la	
SN 1054	明月記 (also in Chinese record 宋史) "後冷泉院・天喜二年四月中旬以後の丑の時、 <mark>客星</mark> 觜参の度に出づ。東方に見わる。"	Crab nebula	II	Made the Crab pulsar
SN 1181	吾妻鏡 "治承五年六月廿五日(1181年8月7日) 庚午。戌尅。 <mark>客星</mark> 見艮方。"	?	?	
SN 1572	"De nova stella" by Tycho Brahe	Tycho's SNR	la	Rebuttal of the Aristotelianism concept of unchanging sky
SN 1604	In European, Chinese, Korean, Arabic sources	Kepler's SNR	la	
SN 1987A		SNR 1987A	Ш	At LMC. First detection of SN $ u$

The newest un-identified SNR 1181

	Name	Historical Record	SN Remnant	SN Type	Note
	SN 185	後漢書 巻十二 (Book of Later Han vol 12) "中平二年十月癸亥, <mark>客星 (guest star)</mark> 出南門中, 大如半筵,五色喜怒稍小,至後年六月消"	RCW 86	la?	
	SN 393	宋書 巻二十五 (Song Shu vol 25) "太元十八年二月、有 <mark>客星</mark> 在尾中、至九月乃滅"	RX J1713.7-3946	ll or lb	
	SN 1006	Sources in China, Japan, Iraq, Egypt, Europe	SN 1006	la	
	SN 1054	明月記 (also in Chinese record 宋史) "後冷泉院・天喜二年四月中旬 客星觜参の度に出づ。東方に the newest u	Crab nebula un-identified	II SNR	Made the Crab pulsar
	SN 1181	吾妻鏡 "治承五年六月廿五日(1181年8月7日) 庚午。戌尅。 <mark>客星</mark> 見艮方。"	?	?	
	SN 1572	• It occurred in the direction of Cassiopeia			Rebuttal of the Aristotelianism concept of unchanging sky
SI	SN 1604	 It is as iuminous as Saturn It lasted for 180 days 			
	SN 1987A		5NR 15077		At LMC. First detection of SN ν

A leading candidate of SNR 1181 IRAS 00500+6713 distance ~ 2.3

- The on-sky location fits historical reports of SN 1181
- Radius and velocity of the remnant \rightarrow SN happened ~1000 yr ago

- IRAS 00500+6713 has been a leading candidate of SN 1181 remnant!
- I will report the properties of this object

distance ~ 2.3 kpc (Gaia DR3)

Mid-Infrared/Optical Observation

Î Î Î	Parameter	Value	
E←	$\log(L_*/L_{\odot})$	4.60 ± 0.14	
<u></u>	Т. (К)	211,000 ^{+40,000} _23,000	
0	R _* (R _☉)	0.15 ± 0.04	
	\dot{M} (M_{\odot} yr $^{-1}$)	$(3.5\pm 0.6) imes 10^{-6}$	
	D	10	
2 arcmin	v_∞ (km s $^{-1}$)	$16{,}000\pm1{,}000$	
	β	1.0	
	d (kpc)	$3.07^{+0.34}_{-0.28}$	
	<i>E</i> (<i>B</i> – <i>V</i>) (mag)	0.835 ± 0.035	
	R_V	3.1	
0	He mass fraction	<0.1	
	C mass fraction	$\textbf{0.2}\pm\textbf{0.1}$	
	O mass fraction	$\textbf{0.8}\pm\textbf{0.1}$	
	Ne mass fraction	0.01	Gu
	Fe group mass fraction	$1.6 imes 10^{-3}$	Ű

Massive White Dwarf : WD J005311

IRAS 00500+6713

Gvaramadze+ 2019

The given uncertainties are an indicator of the obtained fit quality as a function of stellar parameters, on the basis of the criteria described in Methods. Owing to the nature of this analysis they do not represent statistical error distributions. Parameters without error estimates were adopted in the model. D, wind clumping factor; β , acceleration parameter; d, distance to J005311; R_v total-to-selective absorption ratio.

 $M \sim 1 M_{\odot}$ (Kashiyama+ 2019, Lykou+2023) $v_{esc} \sim v_{wind} = 1.5 \times 10^9$ cm/s

 $r_{WD} \sim 10^8 \, {\rm cm}$

White Dwarf

Massive White Dwarf : WD J005311

IRAS 00500+6713

WD mass $\sim 1.1 - 1.3 M_{\odot}$ $\Omega \sim 0.2 - 0.5 /s$

Parameter	Value
$\log(L_*/L_{\odot})$	4.60 ± 0.14
<i>T</i> _* (K)	211,000+40,000
R _∗ (R _☉)	0.15 ± 0.04
\dot{M} (M_{\odot} yr $^{-1}$)	(3.5 \pm 0.6) $ imes$ 10 ⁻⁶
D	10
v_∞ (km s $^{-1}$)	$16,\!000 \pm 1,\!000$
β	1.0
d (kpc)	3.07 ^{+0.34} -0.28
<i>E(B – V</i>) (mag)	0.835 ± 0.035
R _V	3.1
He mass fraction	<0.1
C mass fraction	0.2 ± 0.1
O mass fraction	0.8 ± 0.1
Ne mass fraction	0.01
Fe group mass fraction	1.6×10^{-3}

Gvaramadze+ 2019

The given uncertainties are an indicator of the obtained fit quality as a function of stellar parameters, on the basis of the criteria described in Methods. Owing to the nature of this analysis they do not represent statistical error distributions. Parameters without error estimates were adopted in the model. D, wind clumping factor; β , acceleration parameter; d, distance to J005311; R_{ν} , total-to-selective absorption ratio.

Peculiar properties of SNR 1181

Peculiar properties of SNR 1181

IRAS 00500+6713 includes a white dwarf \rightarrow SN 1181 may be a SN Iax?

SN 1181 is a type Iax SN?

SN Iax is thought to leave a WD as its remnant.

Features of SN Iax

- Type Iax SN \rightarrow sub-luminous Type Ia SN
- thought to leave a white dwarf as a remnant
- typical ejecta mass ~ 0.5 solar mass
- rate $\rightarrow \sim 10\%$ of SN Ia rate
- progenitor \rightarrow If DD : ONe WD + CO WD with super-Chandrasekhar ?

Our work

- We assume this nebula is SNR 1181.
- We analyze the X-ray emission from the SNR .
- We calculate the time evolution of the SNR.
- \rightarrow We estimate the ejecta mass, explosion energy of SN 1181
- \rightarrow consistent with SN Iax? with every observation?
 - \rightarrow If so, our work supports this nebula is a type Iax SNR 1181
 - \rightarrow If not, this nebula should not be SNR 1181

arXiv: 2401.12487

arXiv: 2304.14669

- If this nebula is SNR 1181, there might be a radio source
- We estimate the radio source and search the radio archive data.

Mid-Infrared Observation

X-ray observation

15

Chandra observation

r = 0.77 - 1.60 arcsec $\rightarrow 0.0087 - 0.018 \text{ pc}$

comparing with photosphere radius $\sim 10^{10}$ cm This region is certainly spread

→inner X-ray region is not WD origin

SNR consists of Multi layers

Oskinova+ 2020

Multi layer structure

Multi layer structure

Outer region modeling

Inner modeling

- We use thin shell approximation.
- EOM + energy conservation of the shell

$$\begin{split} \frac{d}{dt}M_{\rm sh,in} &= \dot{M}_{\rm w} + 4\pi r_{\rm sh}^2 \rho_{\rm ej}(r_{\rm sh}) \left(v_{\rm sh} + \sqrt{\frac{2GM_*}{r_{\rm sh}}}\right).\\ M_{\rm sh,in}\frac{dv_{\rm sh}}{dt} &= 4\pi r_{\rm sh}^2 \left[p_{\rm sh} - \rho_{\rm ej}(r_{\rm sh}) \left(v_{\rm sh} + \sqrt{\frac{2GM_*}{r_{\rm sh}}}\right)^2\right] - \frac{GM_{\rm sh,in}M_*}{r_{\rm sh}^2},\\ & \frac{d}{dt} \left[\frac{4\pi r_{\rm sh}^3}{3} \frac{p_{\rm sh}}{\gamma - 1}\right] = L_{\rm w} - p_{\rm sh} \times 4\pi r_{\rm sh}^2 v_{\rm sh}, \end{split}$$

- If the observed wind is released steadily from the time of merger (1181 AD)
- \rightarrow r_inner >> 0.018 pc (constraint from X-ray analysis)

Wind started blowing recently?

- Wind is produced by the surface burning of the massive WD
- Wind launching timescale can be estimated by Kelvin-Helmholtz timescale

$$t_{KH} = \frac{GM^2}{RL} \sim 1000 \text{ years}$$
 Schwab+ 2016

• We consider the wind started blowing recently \rightarrow free parameter

Parameters of our model

	parameters estimated from observations	
distance	$d \; [m kpc]$	$2.3\substack{+0.1 \\ -0.1}$
wind mass loss rate	$\dot{M}_{ m w} \left[M_\odot { m yr}^{-1} ight]$	$(7.5-40) \times 10^{-7}$
wind mechanical luminosity	$L_{ m w} \left[{ m erg s^{-1}} ight]$	$(0.53-2.8) \times 10^{38}$
an milan	$ heta_{ ext{in}} [ext{arcsec}]$	0.77 - 1.6
radius	$ heta_{ m out} [m arcsec]$	129^{+3}_{-3}
Tadius	$ heta_{ m d} [m arcsec]$	60^{+12}_{-12}
expansion velocity	$v_{ m SII}~[{ m kms^{-1}}]$	$1100\substack{+100 \\ -100}$
	FM . $[10^{52} \text{ cm}^{-3}]$	180 ± 40 (near-solar)
omission monguro	EM _{in} [10 cm]	6.3 ± 1.1 (pure metal)
emission measure $EM_{out} [10^{52} \text{ cm}^{-3}]$ $370 \pm 100 \text{ (near-solar)}$ $3.6 \pm 0.8 \text{ (pure metal)}$	370 ± 100 (near-solar)	
	EMout [10 CIII]	3.6 ± 0.8 (pure metal)
	parameters estimated from our model	
ower law index of the SN ejecta density profile	n	6 (fixed)
ower-law index of the SIV ejecta density prome	δ	1.5 (fixed)
number density of ISM	$n_{ m ISM}~[{ m cm}^{-3}]$	$\mathbf{\hat{c}}$
ejecta kinetic energy	$E_{ m ej} \ [10^{48} \ { m erg}]$	• • •
ejecta mass	$M_{ m ej} \; [M_{\odot}]$	i i
	$t_{\rm w}$ [vr]	Ko+2

Parameters of our model

Outer analysis gives

$$\left(\frac{E_{\rm ej}}{10^{48}\,{\rm erg}}\right)^{-1/2} \left(\frac{M_{\rm ej}}{0.5\ M_{\odot}}\right)^{1/6} \left(\frac{\mu_{\rm ISM} n_{\rm ISM}}{0.1\ {\rm cm}^{-3}}\right)^{1/3} = 0.86.$$
$$n_{\rm ISM} = 0.11\ {\rm cm}^{-3} \left(\frac{{\rm EM}_{\rm out}}{3.7 \times 10^{54}\ {\rm cm}^{-3}}\right)^{1/2}.$$

We solve the inner region with each parameter sets: $M_{\rm ej}, t_{\rm wind}$

Inner region calculations

Progenitor mass

• progenitor binary mass = remnant mass +ejecta mass

 $1.1 < M_{WD} < 1.3 M_{\odot}$ (Kashiyama +2019) $0.18 M_{\odot} < M_{ej} < 0.53 M_{\odot}$ (This work)

- progenitor binary mass : $1.3 1.8 M_{\odot}$
- \rightarrow ONe WD + CO WD? as Kashyap+2018 reported.

What is SN Iax?

- Type Iax SN \rightarrow sub-luminous Type Ia SN
- thought to leave a white dwarf as a remnant
- typical ejecta mass ~ 0.5 solar mass
- rate $\rightarrow \sim 10\%$ of SN Ia rate

Figure 13. Comparison of the ejecta mass against kinetic energy released by Type Iax SNe. Pa 30/SN 1181 is marked in red. Lach et al. (2022) models are also shown (open diamonds), while the range of expected values for Iax by Foley et al. (2013) is shown in black (dashed). A few examples of known extragalactic Iax are also shown: 2008ha and 2010ae data by Stritzinger et al. (2014), 2007gd by McClelland et al. (2010), 2014ck by Tomasella et al. (2016), 2019gsc by Srivastav et al. (2022).

Physical quantities of SN 1181 estimated by our work are almost consistent with SN Iax

 \rightarrow our model strongly suggests IRAS 00500+6713 is Type Iax SN 1181 remnant !

Conclusion of the first paper

- IRAS 00500+6713 has been a leading candidate of SNR 1181
- Type Iax SN 1181 remnant has a multiple layer and includes a massive ONe WD
- We follow the time evolution of the SNR 1181 and obtain
 - ejecta from SN 1181 : $0.18M_{\odot} < M_{\rm ej} < 0.53M_{\odot}$
 - SN 1181 energy : 0.77×10^{48} erg $< E_{ej} < 1.1 \times 10^{48}$ erg
- These values are consistent with the assumption that type Iax SN occurred at 1181
- \rightarrow strongly supports that IRAS 00500+6713 is a SN 1181 remnant
- Fast wind started blowing recently! 12 yr $< \Delta t_w < 30$ yr
- WD J005311 was formed by ONe WD + CO WD and mass of the binary system is $1.3 - 1.8 M_{\odot}$

Wind started blowing recently?

- The KH timescale $\sim 1000 \text{ yr} \rightarrow \text{The wind can start blowing recently}$
- By checking this, we can justify our theoretical model.
- \rightarrow Precise spread and the expansion velocity is required.
 - Radio observation \rightarrow from next slides
 - Better spatial resolution
 - Magneto structure
 - XRISM observation \rightarrow future work (the deadline of the proposal is Feb. 22nd)
 - Better energetic resolution \rightarrow We may be able to obtain the expansion velocity from the spectral
 - Precise composition

s = 2.5		
Optimistic	$\epsilon_e = 1 \times 10^{-3}$	
Fiducial	$\epsilon_e = 3 \times 10^{-4}$	
Pessimistic	$\epsilon_e = 1 \times 10^{-4}$	
s = 3		
Optimistic	$\epsilon_e = 2 \times 10^{-2}$	
Fiducial	$\epsilon_e = 5 \times 10^{-3}$	
Pessimistic	$\epsilon_e = 1 \times 10^{-3}$	

Synchrotron Emission

s = 2.5	
Optimistic	$\epsilon_e = 1 \times 10^{-3}$
Fiducial	$\epsilon_e = 3 \times 10^{-4}$
Pessimistic	$\epsilon_e = 1 \times 10^{-4}$
s = 3	
Optimistic	$\epsilon_e = 2 \times 10^{-2}$
Fiducial	$\epsilon_e = 5 \times 10^{-3}$
Pessimistic	$\epsilon_e = 1 \times 10^{-3}$

Ko+ 2024

power-law index p = 2.5power-law index p = 3VLA (10GHz, 1hr) 10²⁰ 10²⁰ 101 101 VLASS ∇ NVSS outer region (100-120") V CGPS 10¹⁹ 10^{19} - 10⁰ - 10⁰ L_{v} [erg s⁻¹ Hz⁻¹] 10₁₂ L_{ν} [erg s⁻¹ Hz⁻¹] 10₁₈ 10₁₁ ر 10-1 آج ج ہ [10-1 [بر · 10⁻² 10-2 1016 10¹⁶ 10-3 10-3 inner region (1.5") 10¹⁵ 10¹⁵ 10⁹ 1011 10⁷ 10⁸ 10⁹ 1010 1011 107 108 1010 1012 10¹² v [Hz] v [Hz]

Radio archive data

No detection by VLASS, NVSS, CGPS (3 sigma)

Radio future observation

Proposal for VLA

Future work

- Radio observation
 → spatial information
 proposal to VLA (submitted)
- XRISM observation \rightarrow spectral information (deadline 2/22)

- Why wind started blowing recently?
- \rightarrow theoretical modeling (carbon accretion on ONe WD)

Other interesting Features

Dust Features

- We cannot explain the dust formation and extinction.
- Only a few SN Ia(x) remnant with dust inside the remnant.

Filaments Structure

• long filament structure (Fesen+2023)

Fesen+2023

To Reveal the Filament Structure

• Are there such filament structures in outer shocked ISM/ejecta ? \rightarrow Subaru narrow band imaging (H α)

$H\alpha$ line in the outer shocked ISM

Virginia Tech "Ha" Spectral-line Survey (VTSS; Dennison et al. 1998)

- \rightarrow tentatively detected (~ 200 uJy or ~ 18 mag)
- \rightarrow proposal for Subaru (~1 mins)
- → Where is the contact surface?
 ISM number density?
 Are there filament structure?

Proposal Deadline : April 2nd w/ K. Maeda, K. Uno, K. Taguchi, T. Shigeyama, Y. Shiraishi

Dust Features (ongoing with Hotoke-san)

Figure 12. Infrared SED of Pa 30, including the new photometry in Section 5.2 (60 K blackbody; blue) and the OSIRIS/GTC spectrum (red). There is no IR excess below 10 μ m. The photometry below 3 μ m and spectrum have been dereddened using extinction from Paper I.

48

Searching for the companions

- SD vs DD
- If SD, companion must survive
- If DD, no companion
- If exists, can we find it by Subaru?

\rightarrow No.

Because the binary would not break... Since a WD is left...

Created by Shiraishi-kun based on Gaia data

Features our model cannot explain

- Schaefer 2023 examined approximately 100 years of the object's luminosity and found that the luminosity has been fading.
- We guess this might relate to the wind starting blowing recently

Figure 7. The central star is fading fast from 1889 to 2022. This light curve is from Table 2, with typical error bars of 0.10–0.15 mag before 1960, and ± 0.03 for the last two decades. All data sets have the observed scatter around the mean light curve being substantially larger than the measurement errors, so the scatter is dominated by the intrinsic night-to-night variability of order 0.2 mag. The primary point of this figure is to test my prediction that a surviving stellar remnant of an 842-year-old supernova might still be fast fading over the past century. To test this prediction, it is vital that all the *B* magnitudes be calibrated into an identical photometric system, and this renders useless the large amounts of post-1950 photometry. The result of this test is that the stellar remnant is certainly fading at a fast rate, with a drop of 1.68 mag in the last 105 yr.

Please remember

- There is a recently-identified historical SNR 1181 with a massive WD in its center.
- There may be several such SNRs (or WDs) in our universe.

Sculpting the Morphology of Supernova Remnant Pa 30 via Efficient Ejecta Cooling

PAUL C. DUFFELL,¹ ABIGAIL POLIN,^{2, 3, 1} AND SOHAM MANDAL¹

¹Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA ²The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA ³TAPIR, Walter Burke Institute for Theoretical Physics, 350-17, Caltech, Pasadena, CA 91125, USA

ABSTRACT

We demonstrate in a proof-of-concept numerical hydrodynamics calculation that the narrow radial filamentary structures seen in Pa 30 could be generated through highly efficient cooling (e.g. via line emission) in the ejecta. Efficient cooling in the ejecta causes a drop of pressure support in Rayleigh-Taylor fingers, leading them to be compressed, and suppressing the growth of Kelvin-Helmholtz instability. Following this result, we make three predictions that could determine whether this is the mechanism responsible for shaping Pa 30: First, we predict very strong emission lines, strong enough to cool a significant fraction of the shock energy in an expansion time. Secondly, we predict that the forward shock should be highly corrugated on small scales, with the shock front closely following the structure of the filaments. Third, we predict that these filaments should be nearly ballistic, with velocities around 90% of the free-expansion velocity ($v \approx 0.9 r/t$). These predictions should be falsifiable in follow-up observations of this remnant.

Keywords: supernovae, shocks, supernova remnants, hydrodynamics

Figure 1. Passive scalar X denoting composition (ejecta vs. CSM) at $t = T_{\text{sweep}}$. Upper half employs cooling and lower half included no cooling.

