Nov. 1-2, 2023, ICRR multi-messenger astronomy symposium

Jet models for low-luminosity GRBs and multi-messenger astronomy

低光度ガンマ線バーストのジェットモデルと マルチメッセンジャー天文学

collaborator: Keiichi Maeda (Kyoto U.), Chris Irwin (RESCEU)

Refs.

- Suzuki & Maeda (2022), ApJ 925, 148
- Maeda, <u>Suzuki</u>, & Izzo (2023), MNRAS 522, 2267
- Suzuki, Irwin, & Maeda (2023?), in prep.

<u>Akihiro Suzuki (Research Center for the Early Universe, Univ. of Tokyo)</u>

Gamma-ray bursts

- a burst of gamma-rays in the sky
- duration > 2 sec \rightarrow long-duration GRB
- massive stars' explosive death \rightarrow relativistic jet •
- association with supernovae (SNe), in particular, broad-lined SNe-lc

Sular,		long GRBs	short GRB
	duration T ₉₀	> 2 sec	< 2 sec
	γ -ray spectrum	soft	hard
	origin	massive star's collapse	NS-NS merger
	optical counterpart	core-collapse supernova	kilonovae
	after-glow	bright	dark
	host galaxy	star-forming	old population
	location	associated with stellar lights	outskirt

long-duration Gamma-ray bursts

- GRB-SN association
- energetic SNe-Ic with E~10⁵²erg (i.e., hypernovae)
- various chemical elements found in the SN spectra
- important tracers of explosion mechanism and progenitor system

GRB afterglow + SN light: Stanek+ (2005)

selected GRB-SNe with spectroscopic confirmation

	associated SN	redshif
GRB 980425	SN 1998bw	z=0.008
GRB 030329	SN 2003dh	z=0.168
GRB 031203	SN 2003lw	z=0.105
GRB 060218	SN 2006aj	z=0.033
GRB 100316D	SN 2010bh	z=0.059
GRB 120425A	SN 2012bz	z=0.283
GRB 130702A	SN2013dx	z=0.145
GRB 140606B	iPTF4bfu	z=0.384
GRB 161219B	SN 2016jca	z=0.147
GRB 171205A	SN 2017iuk	z=0.037

- •
- afterglow from radio to TeV

Iow-luminosity GRBs

- GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by 5-6 orders of magnitudes
- outliers in Epeak-Eiso relation •
- more common than normal GRBs

Iow-luminosity GRBs

- GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by 5-6 orders of magnitudes
- outliers in Epeak-Eiso relation •
- more common than normal GRBs

low-luminosity GRBs are UHECRs and ν source?

- cosmological GRBs have been promising ν sources Waxman&Bahcall(1997), Rachen&Meszaros(1998), Ahlers+(2011) So far, IceCube found no association of ν events with (powerful) GRBs. Abbasi+(2012,21,22), Aartsen+(2015,16,17)
- •
- (powerful) GRBs contribute only up to 1% of diffuse ν flux at ~0.1-1 PeV? •
- unlike cosmological GRBs, IIGRBs are dark in γ -ray, but seem more common • e.g., 230+490-190 Gpc-3 yr-1 (Soderberg+ 2006), 100-1800 Gpc-3 yr-1 (Guetta&Della Valle 2007)

Halzen&Kheirandish (2022), arXiv:2202.00694

low-luminosity GRBs are failed jets?

- jet deceleration = energy dissipation
- the jet energy goes into kinetic and thermal energies of expanding CSM •
- a small fraction of the thermal energy goes into CRs and ν
- •

low-luminosity GRBs are failed jets?

- jet deceleration = energy dissipation
- the jet energy goes into kinetic and thermal energies of expanding CSM
- a small fraction of the thermal energy goes into CRs and ν
- •

- 3D special relativistic hydrodynamic simulation in (x,y,z)
- 14 M_{sun} CO core (16Tl; Woosley&Heger 2006)
- chemical composition: hypernova-like (e.g., lwamoto+ 2000)
- thermal bomb ($5x10^{51}$ erg, $R_{in}=10^{9}$ cm)
- relativistic jet (5x10⁵¹ erg per jet, t_{jet}=20s, θ_{jet} =10 deg, $R_{in}=10^{9}cm, \Gamma_{\infty} \sim 100)$

10M_• CO core+ 10⁵² erg model by Iwamoto+ (2000)

- 2000)
- thermal bomb ($5x10^{51}$ erg, $R_{in}=10^{9}$ cm)

- 2000)
- thermal bomb ($5x10^{51}$ erg, $R_{in}=10^{9}$ cm)
- Rin=10⁹ cm, $\Gamma_{\infty} \sim 100$)

- 3D special relativistic hydrodynamic simulation in (x,y,z)
- 14 M_{sun} CO core (16TI; Woosley&Heger 2006)
- chemical composition: hypernova-like (e.g., lwamoto+ 2000)
- thermal bomb ($5x10^{51}$ erg, $R_{in}=10^{9}$ cm)
- relativistic jet (5x10⁵¹ erg per jet, t_{jet}=20s, θ_{jet} =10 deg, $R_{in}=10^9 cm, \Gamma_{\infty} \sim 100$

z>0

 $\rho_{\rm csm} \propto r^{-2}$

CSM/Extended envelop Mcsm: 0.1 - 10 Msun Rcsm: 40Rsun or 400Rsun

X,Y

14Mo CO core

thermal bomb 5x10⁵¹erg + relativistic jet 5x10⁵¹erg

inner core R_{in}=10⁹cm

model	Mcsm[Msun]	Rcsm[Rs
M01R40	0.1	
M03R40	0.3	
M1R40	1.0	
M3R40	3.0	
M10R40	10	
M01R400	0.1	
M03R400	0.3	
M1R400	1.0	
M3R400	3.0	
M10R400	10	

see, AS & Maeda (2022) for more detail

• a GRB jet-CSM collision in meridional slice (x-z plane) from t=1.0 to t=22.0 s

GRB jet-CSM collision in meridional slice (x-z plane) from t=30 to t=200 s а •

• a GRB jet-CSM collision in meridional slice (x-z plane) from t=100 to $t=3x10^3$ s

• a GRB jet-CSM collision in meridional slice (x-z plane) from $t=2x10^3$ to $t=9x10^3$ s

AS, Irwin, &Maeda, in prep.

-5 -10-15 15 10 5 0 $^{-1}$

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- a fraction of CSM is swept by the shock driven by the jet
- mass and energy of ejecta accelerated beyond v=0.1c: - M(v>0.1c) ~ (0.05-0.12)M_{sun}

- $E_{kin}(v>0.1c) \sim (1-5)x10^{51}erg$

only weakly dependent on the CSM • properties (M_{csm} and R_{csm})

Thermal emission powered by jet dissipation

- a fraction of CSM is swept by the shock driven by the jet
- mass and energy of ejecta accelerated beyond v=0.1c: - M(v>0.1c) ~ (0.05-0.12)M_{sun}

- $E_{kin}(v>0.1c) \sim (1-5)x10^{51}erg$

- only weakly dependent on the CSM • properties (M_{csm} and R_{csm})
- thermal emission from the fast ejecta can account for the early UV-opt luminosity of IIGRBs and SN Ic-BL 2020bvc
- this thermal emission could be common

Summary: IIGRBs in multi-messenger era

- jet deceleration = energy dissipation
- the jet energy goes into kinetic and thermal energies of expanding CSM
- a small fraction of the thermal energy goes into CRs and ν
- •

- jet deceleration = energy dissipation

- jet deceleration = energy dissipation

Backup slides

GRB jet simulations: radial profiles

- angle-averaged profiles of density, 4velocity, pressure, and kinetic energy density
- almost free expansion (v=r/t)
- density structure is remarkably universal
- power-law function of radial velocity with index -5: $\rho \propto v^{-5} \propto r^{-5}$

Future studies

GRB 171205A: a GRB-SN in very early stage

- (low-luminosity) GRB 171205A/ SN 2017iuk at • D=163Mpc
- trigger
- Eiso~2.2x10⁴⁹[erg], T₉₀~190[s]

Izzo+ (2019, Nature) including K. Maeda & AS

GRB 171205A: a GRB-SN in very early stage

- (low-luminosity) GRB 171205A/ SN 2017iuk at D=163Mpc
- optical spectroscopy as early as 0.06 days after GRB trigger
- Eiso~2.2x10⁴⁹[erg], T₉₀~190[s]

Izzo+ (2019, Nature) including K. Maeda & AS

GRB 171205A: a GRB-SN in very early stage

- (low-luminosity) GRB 171205A/ SN 2017iuk at D=163Mpc
- optical spectroscopy as early as 0.06 days after GRB trigger
- blue-shifted absorption features with $v=10^{5}$ km/s~0.3c
- Fe,Co,Ni well mixed into the fast component (X~0.01)
- density profile $\rho \propto v^{-6}$

Izzo+ (2019, Nature) including K. Maeda & AS

Velocity [104km/s]

Chemical abundance distribution used for the spectral modeling with the TARDIS code

Early spectral evolution of GRB-SNe

- (low-luminosity) GRB 171205A/ SN 2017iuk at D=163Mpc
- optical spectroscopy as early as 0.06 days after GRB trigger
- blue-shifted absorption features with $v=10^{5}$ km/s~0.3c
- Fe,Co,Ni well mixed into the fast component (X~0.01)
- density profile $\rho \propto v^{-6}$

Maeda, **AS**, & Izzo (2023)

7iuk at D=163Mpc ays after GRB trigger 10⁵km/s~0.3c hent (X~0.01)

SN 2020bvc: an optically-selected off-axis GRB-SN?

- ZTF discovery
- ATLAS non-detection
- follow-up spectroscopic obs. 0.8 days
- early spectrum dominated by blue continuum
- late-time X-ray and radio detection: similar • to SN 2017iuk.

Izzo+ (2020)

Ho+ (2020)

SN 2020bvc: an optically-selected off-axis GRB-SN?

- ZTF discovery
- ATLAS non-detection
- follow-up spectroscopic obs. 0.8 days
- early spectrum dominated by blue continuum
- late-time X-ray and radio detection: similar to SN 2017iuk.

Ho+ (2020)

SN 2020bvc: an optically-selected off-axis GRB-SN?

- ZTF discovery
- ATLAS non-detection
- follow-up spectroscopic obs. 0.8 days
- early spectrum dominated by blue • continuum
- late-time X-ray and radio detection: similar • to SN 2017iuk.
- 1 or 2 out of 6 SNe lc-BL(z<0.06) are accompanied by early bright emission: 20-30% of SNe Ic-BL show jet signature?

Ho+ (2020)

low-luminosity GRBs

- nearby GRBs (< a few 100Mpc) are low-luminosity GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by 5-6 orders of magnitudes
- outliers in Epeak-Eiso relation
- what are they? 1.0 **(C) Relative probability** 8.0 0.6 0.4 0.2 0.0 (a) HL-GR Bs 0⁵⁰ erg s⁻¹ Log L/1 0312030 3σ 980425 LL-GRBs ★ -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 0.0 -3.0

e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)

Volumetric rate summary

- CCSNe: RCCSN ~10⁵[events/Gpc³/yr]
- broad-lined Ic SNe: RIC-BL ~ 2-3% of RCCSN ~ (2-3)x10³ [events/Gpc³/yr] ٠
- <u>double-peaked</u> Ic-BL SNe: 1/6 or 2/6 of R_{Ic-BL} ~ 300-1000 [events/Gpc³/yr]?

- IIGRB rate: RIIGRB ~ 100-1000 [events/Gpc³/yr] ?
- - $E_{\rm inj} \simeq 10$

ZTF SNe Ic-BL with z<0.06 like 2020bvc (Ho+ 2020) • long GRB rate: $R_{IGRB} \sim 1$ [events/Gpc³/yr] γ -rays are not so beamed? but, small statistics e.g., 230+490-190 Gpc-3 yr-1 (Soderberg+ 2006), 100-1800 Gpc-3 yr-1 (Guetta&Della Valle 2007)

Assuming a jet dissipation energy Ediss and event rate R, the energy injection rate is

$$O^{45}\epsilon_{acc}\left(\frac{E_{diss}}{10^{51} \,[erg]}\right)\left(\frac{R}{1000 \,[Gpc^{-3}yr^{-1}]}\right)[erg\,Mpc^{-3}\,yr^{-1}]$$

cf.) $\dot{E}_{\text{GeV}\nu} \sim \dot{E}_{\nu} \sim \dot{E}_{\text{UHECRs}} \sim 10^{44} - 10^{45} [\text{erg Mpc}^{-3} \,\text{yr}^{-1}]$

- . UVOIR obs. gives $E_{\rm rad}$
- . with ν obs., we can estimate $E_{CR} + E_{\nu}$

