Roles of Cosmic-Rays in Astrophysics: The History of Our Galaxy (arXiv:2306.16887) Jiro Shimoda マルチメッセンジャー天文学の展開, 2023, November, 2

Cosmic Rays

Roles of Galactic Cosmic Rays

0.5

2

"Puzzling" Star Formation History (in the context of the current Galactic disk condition)

Total mass of DM: $\sim 10^{12} M_{sun}$ Total mass of stars: ~ 4-6 x 10^{10} M_{sun} Current SFR: $\sim 1 M_{sun}/yr$ Total gas mass: $\sim 10^9 M_{sun}$

Cf. Bland-Hawthorn & Gerhard 16, the Planck Collaboration 18

- 1. The gas should be depleted within $\sim 1 \text{ Gyr}$!
- 2. Replenishment of gas is required.
- 3^{°°}. Galactic halo (CGM) may be a dominant gas reservoir.

4

က

 \sim

'Puzzling" Star Formation History (in the context of the standard Cosmology)

Total mass of DM: $\sim 10^{12} M_{sun}$ Total mass of stars: ~ 4-6 x 10^{10} M_{sun} Current SFR: $\sim 1 M_{sun}/yr$ Total gas mass: $\sim 10^9 M_{sun}$

Cf. Bland-Hawthorn & Gerhard 16, the Planck Collaboration 18

From the context of Cosmology ...

Stellar mass [10¹⁰Msun] ഹ 4 က \sim

 \cap

1. The total mass of the state of the set o 2. Why is a half of baryons converted to the stars? 3^(c) Why dose the only ~ 1 % of baryon remain in the disk?

"Puzzling" Star Formation History (the metal amount)

@ disk SFR ~ 3 Mo/yr Gas mass ~ 10^9 Mo (Metallicity Zo ~ $0.01 \rightarrow$ Metal mass ~ 10^7 Mo) Salpeter IMF \rightarrow Massive Star FR ~ 0.1 Mo/yr

Total Metal Mass Ejected by SNe

 $\rightarrow \sim$ (SFR) x (Massive Star fraction) x (CO core mass fraction) x (14 Gyr) ~ (3 Mo/yr) x (0.1) x (3 Mo/8 Mo) x (14 Gyr)

~1.6 x 10⁹ Mo

Most of the metals should be removed from the disk! Only the *dilution* by the primordial gas accretion is not enough.

8

Galactic Wind Model (SJ & Inutsuka 22)

-3

V

Credit: MPE/IKI

Galactic wind

RDS/TAFLまを変更衝動。0.3~0.0keVのエネルギーのX線を急、1.0~1keVを経、1~2.3keVを客に合付けして含成されています。 Dedit: NPE/R4

The X-ray emitting gas at the disk becomes the wind.
 The origin of the Galactic Diffuse X-ray Emission is an *open question*.

Consistent with both X-ray observations and theoretical model of wind

The origin & mass of HVCs is still an open question.

Accretion rate is not constrained by observations... → Theoretical estimates

The baryon accretion rate

→ Use the results of the DM N-body simulation (Rodriguez-Puebla+16)

Done (arXiv:2306.16887)

Problems

1. The origin of the X-ray emissions at/around the Galactic disk.

→Numerical simulations imply its existence, but actual physical processes are still under debate.

2. The existence of the Cosmological accretion gas onto the disk.

 \rightarrow If it has a virial temperature of ~ 10⁶ K, the observations are difficult (FUV ~ soft X-rays are obscured).

3. The resultant disk & CGM conditions (including CRs, metal, etc.) are still unclear.

We study the 3rd issue in this talk.

Toward the Next-generation Multi-messenger Astronomy

Toward the Next-generation Multi-messenger Astronomy

18

Distance from the Galactic center (kpc)

1. Cosmic-rays

 $p_{cr} + p_{gas} \rightarrow 2\gamma, v$ 2. Gas dynamics around the Galaxy Provide the Initial Conditions of the stellar dynamics. \rightarrow the Galactic Archaeology 3. Star Formation at the disk.

We have no time to introduce this model... The details are shown in arXiv:2306.16887. We construct a ***time-dependent*** semi-analytic model of the galactic system Disk: 1D, α -disk model including Low-mass stars Massive stars Neutron stars GW, v emissions Cosmic-rays **Planet** formation **Metals** Cosmic life Wind: test particle approximation CGM: one-zone model **IGM: DM N-body simulation**

IGM acc. Rate → Use the results of the DM N-body simulation (Rodriguez-Puebla+16)

Results

cosmic time (Gyr)

SFR becomes half of the IGM accretion rate!

Total mass of stars: $\sim 4~x~10^{10}~M_{sun}$ consistent with 4-6 $x~10^{10}~M_{sun}$

Results

Predehl+20

*Hadronic γ-ray

Estimated thermal X-ray Intensity (color) and Normalized γ -ray Intensity (contour) at t = 14Gyr the white contours indicate > a half maximum

Our model reproduces the Fermi & eROSITA bubbles? We are preparing quantitative comparison (coming soon)...

Other Results

Star formation, Cosmic-rays, Metallicity are in good agreements!

Other Results

The age-metal distribution is almost consistent with the Gaia obs.

Star formation, Cosmic-rays, Metallicity are in good agreements!

Xing & Rix (2022, by Gaia)

Other Results: Stellar Objects

Other Results: Stellar Objects

"Flower" in the velocity space appears. The similar structure is observed by Gaia? https://www.eurekalert.org/news-releases/620322

IMAGE: GAIA-SAUSAGE STRUCTURE DETECTED BY THE GAIA SATELLITE IN VELOCITY SPACE. (CREDIT: V. BELOKUROV ET AL. 2018, MNRAS, 478, 611).

We can predict the mass evolution of around the Galactic center. → Sgr A* formation & activity can be studied in future work.

Future X-ray Observations

Is the wind scenario universal?

$$\frac{kT_{\rm w}}{m_{\rm p}}\dot{M}_{\rm w} = \eta L_{\rm SN}$$
$$\dot{M}_{\rm w} \sim 4 M_{\odot}/\mathrm{yr} \left(\frac{\eta}{0.1}\right) \left(\frac{L_{\rm SN}}{10^{42} \mathrm{\, erg/s}}\right) \left(\frac{kT_{\rm w}}{0.3 \mathrm{\, keV}}\right)^{-1}$$

Observational tests by the X-ray emissions in external galaxies are required.

 \rightarrow The next plan of X-ray space

telescope, JEDI.

Remaining Theoretical Subjects

Accreting gas is observed by 21 cm emission as known as *High Velocity Cloud*. → Is it responsible for the *inflow*? The origin & mass of HVCs is still an open question.

Recent X-ray and γ-ray surveys suggest a drastic activity of the galactic center.
→ Such bubble-like structures are also an open question.

