Developing "1D+" simulation of core-collapse supernovae "1D+"シミュレーションの開発 ― 超新星爆発の系統的な理解を目指して―

NAOJ/SOKENDAI D2 : Shunsuke Sasaki coauthor: Tomoya Takiwaki 2023/11/02 マルチメッセンジャー天文学の進展@東京大学柏キャンパス

 \mathcal{U} : Neutrino

Core of massive star

Explosion : Shock propagate

Non-explosion : Shock is stalled

About core collapse supernova simulation

Initial condition

- progenitor model (mass)
- Rotation
- Magnetic field
- Perturbation

Numerical setups

- resolution

Output

1D simulation

Sumiyoshi et al. 2005

radius [km]

Red line: shock radius

1D simulation CANNOT get successful explosion results

3D simulation

3D simulation can get successful explosion results

Entropy profile

Burrows et al. 2020

One of the reasons : multi dimensional turbulent effects

Motivation

Goal: progenitor dependence collaboration with other field

1st step

It needs to reproduce the 3D results with 1D+

Huge computational cost: a few month/1model

Including 3D turbulent effects

Turbulent effects

Reynolds decomposition

$$\hat{A} = \langle A \rangle = \frac{1}{4\pi} \int A(r, \theta, \varphi) \, d\Omega$$

$$A' = A - \hat{A} \qquad \langle A' \rangle = 0$$

Turbulence plays an important role in the explosion mechanism.

- (1) Turbulent Pressure $P_{\text{turb}} = \langle \rho v' v' \rangle$
- (2) Diffusion $F_e = \langle e'v' \rangle$, F_K , F_{Y_e}
- (3) Dissipation $\dot{e}_{dis} = \rho v'^3 / L$

We should consider the turbulent effects in CCSN mechanism

Model: Mixing Length Theory

Scale of turbulence : Λ_{mix} Turbulent velocity : v_{turb} mix

Element is powered by buoyancy force : $\omega_{\rm BV}$ [1/sec]

Governing equation (e.g. Müller 2019, Couch et al. 2020)

Mixing length parameter

$$\Lambda_{\rm mix} = \alpha_{\Lambda} H_P = \alpha_{\Lambda} \frac{P}{\rho g} \quad \text{mixing length}$$

Turbulent pressure

Results Evolution of Shock : parameter survey

Mixing length parameters

$$\Lambda_{\rm mix} = \alpha_{\Lambda} H_P = \alpha_{\Lambda} \frac{P}{\rho g} \quad \text{mixing len}$$

We need to set turbulent parameters to mimic 3D simulation.

Progenitor: $12M_{\odot}$ (Woosley & Heger 2007)

At a later phase, our model with $\alpha_{\Lambda}=1.25$ can mimic the evolution of shock . (submitted)

300

For multi-messenger

Explodability

$$\begin{array}{ll} \alpha_{\Lambda} & \text{Mixing length} & \text{parameters} \\ \Lambda_{\text{mix}} = \alpha_{\Lambda} H_P = \alpha_{\Lambda} \frac{P}{\rho g} & \text{mixing len} \end{array}$$

Progenitor : $12,13,14,15,...,40 M_{\odot}$ (Woosly&Hegar 2007)

 $\alpha_{\Lambda} = 1.0, 1.1, 1.2, 1.3$

total 4x23= 92 models

35

⁴⁰ Best fit parameter of $12M_{\odot}$ is $\alpha_{\Lambda} = 1.25$ -> Most models are Explosion model…

Explosion energy [10^51 erg]

Correlation

Summary Our 1D+

The next step in the theoretical study of supernova explosions is the development of 1D+ simulations that can reproduce 3D simulations. 1D+ is expected to be an important tool to facilitate collaborative research with other fields.

Results :

Our 1D+ can mimic shock evolution of 3D

Next researches:

We are researching progenitor dependence and <u>observational value</u> with 1D+ We are trying to develop more realistic 1D+ by 3D analysis

Appendix

1D+ is useful to calculate a lot of models: progenitor dependence

- <progenitor model</pre>
- Rotation
- Magnetic field
- Perturbation
- Numerical setups - resolution

Advanced

1D simulation Systematic study

Compactness: $\xi_M = \frac{M/M_{\odot}}{R(M)/1000 \text{km}}$

$$M(r) = \int_0^r 4\pi \rho r'^2 dr'$$

 $\xi_M > 0.2$: Black hole (black)

 $\xi_M < 0.2$: Supernova (Red)

1D: phenomenological simulation

Prediction : property of progenitor like ξ_M governs supernova explosion

-> However, this prediction is NOT consistent with 3D results

PNS mass

- Figure: models with $\alpha_{\Lambda} = 1.3$
- Explosion: s12 s15 s20 s25 s30 s35 s40
- Non-Explosion: nothing
- Density at PNS radius : 10^{11} [g/cm³]

Estimating GW Eq. 3 Sotani et al. 2021

Figure: models with $\alpha_{\Lambda} = 1.3$

Explosion: s12 s15 s20 s25 s30 s35 s40

Non-Explosion: nothing

 $f[kHz] = -1.410 - 0.443 \ln(x) + 9.337x - 6.714x^2$

$$x \equiv \left(\frac{M_{\rm PNS}}{1.4M_{\odot}}\right)^{1/2} \left(\frac{R_{\rm PNS}}{10 \text{ km}}\right)^{-3/2}$$

Neutrino luminosity

Figure: models with $\alpha_{\Lambda} = 1.3$

Explosion:

s12 s15 s20 s25 s30 s35 s40

Non-Explosion: nothing

500

Diagnostic Explosion energy

Explosion Energy [10⁵¹erg]

Discussion Parameter of turbulence

Total Tubulent Energy [10⁵¹erg]

Figure: models with $\alpha_{\Lambda} = 1.0 - 1.3$ Progenitor : 12 Msun Explosion: $\alpha_{\Lambda} \ge 1.25$ α_{Λ} \uparrow means that larger turbulent energy is generated. Turbulent effects are stronger.

300

Turbulent velocity

Summary Our 1D+

The next step in the theoretical study of supernova explosions is the development of 1D+ simulations that can reproduce 3D simulations. 1D+ is expected to be an important tool to facilitate collaborative research with other fields.

Results :

Our 1D+ can mimic shock evolution of 3D

Next researches:

We are researching progenitor dependence with 1D+ We are trying to develop more realistic 1D+ by 3D analysis

Turbulence is related to them

Initial condition

- progenitor model
- Rotation
- Magnetic field
- Perturbation
- Numerical setups

Turbulence in CCSNe

Phenomenological turbulent model of 1D+ is simple model. This is based on Mixing Length Theory(MLT). MLT select only one eddy length of turbulence: Λ_{mix}

However, turbulence of 3D distributed over a wide range of scale hight. : $\Lambda_{\min} \leq \Lambda \leq \Lambda_{\max}$

Source of turbulent energy should be also corrected.

Kazeroni et al. 2018

 $k = 1/\Lambda$

Turbulence in CCSNe

Turbulence of 3D distributed over a wide range of scale hight. : $\Lambda_{min} \leq \Lambda \leq \Lambda_{max}$

Scale hight depends on resolution.

Growth rate of turbulence also depends on resolution.

-> Explosion phenomenon depends on resolution

Radice et al. 2018

Research Plan3 In order to develop more realistic 1D+

- 1st step: Modeling phenomenological turbulent effects
 -> Analyzing turbulence of 3D (I'm working now)
- 2nd step: Developing and testing more realistic 1D+

3rd step: Predicting progenitor dependence with 1D+

Analyzing turbulent effects with 3D Setup (Radice et al.2016)

Code : 3DnSNe (Takiwaki+2016 ,Matsumoto+2022) Grid number : N_r x N_th x N_phi Area : 40 < r < 400 [km], $\frac{\pi}{4} < \theta < \frac{3\pi}{4}$, $0 < \varphi < \frac{\pi}{2}$ θ, φ :periodic boundary condition, r: steady flow

Perturbation $\frac{\delta \rho}{<\rho>} \sim 1\%$

Other setup is same as setup of Radice (2016)

Model	N_r	N_th x N_phi
name	[grid]	[grid]
X0.5	1000	50 x 50
X1	1000	100 x 100
X2	1000	200 x 200

Analyzing turbulent effects with 3D Shock evolution

	N_r [grid]	N_th x N_phi [grid]
X0.5	1000	50 x 50
X1	1000	100 x 100
X2	1000	200 x 200

Analyzing turbulent effects with 3D Entropy

Analyzing turbulent effects with 3D

We try to analyze turbulent effects based on Reynolds decomposition.

Ex: Reynolds stress tensor

 $R_{ij} = v'_i v'_j = (v_i - \langle v_i \rangle)(v_j - \langle v_j \rangle)$

Analyzing turbulent effects with 3D

Internal energy transport by turbulence:

e' = e - < e >

 $v_r' = v_r - \langle v_r \rangle$

X2 has positive internal energy transport.

Summary Our 1D+

The next step in the theoretical study of supernova explosions is the development of 1D+ simulations that can reproduce 3D simulations. 1D+ is expected to be an important tool to facilitate collaborative research with other fields.

Results :

Our 1D+ can mimic shock evolution of 3D

Next researches:

We are researching progenitor dependence with 1D+ We are trying to develop more realistic 1D+ by 3D analysis

Energy source [10⁵¹ erg/s]

$$\frac{dE_{turb}}{dt} = S_{turb} - E_{dis}$$

Trigger of turbulent energy generation is neutrino heating Q_{ν} .

350 400

Discussion of turbulent effects New model and old model

Two panel shows time evolution of total turbulent energy source in turbulent regime.

Compression C_{gain} is the reason that shock propagation of old model is faster than 3D results

Discussion Effects of Mixing length parameter α_{Λ}

 α_{Λ} determines the scale of turbulence. Large α_{Λ} means that turbulent affects the mechanism strongly.

Turbulence affects advection time and heating time.

compactness

Compactness : $\xi_M = \frac{M/M_{\odot}}{R/1000 \text{km}}$

Progenitor : 12,13,14,15....33,35,40*M*_⊙

Neutrino emitted energy [10^51 erg]

Appendix : calculation of f_{GW} with 1D+ Equation 3 in Sotani et al. 2021

1D+ can evaluate PNS mass M_{PNS} and PNS radius R_{PNS} from density distribution.

Finding the radius that is $\rho = 10^{11}$ [g/c1

Derive the GW frequency f_{GW} from the following equation (Sotani et al. 2021)

 $f[kHz] = -1.410 - 0.443 \ln(x) + 9.337x - 6.7$

m³]
$$\rightarrow R_{PNS} \quad M_{PNS} = \int_0^{R_{PNS}} 4\pi r^2 \rho dr$$

$$14x^2 , x \equiv \left(\frac{M_{\rm PNS}}{1.4M_{\odot}}\right)^{1/2} \left(\frac{R_{\rm PNS}}{10 \text{ km}}\right)^{-3/2}$$

Movie 1D+ simulation

Entropy

density

velocity

