<u>マルチメッセンジャー天文学の展開 @ ICRR</u>

西脇公祐 (ICRR) Kosuke NISHIWAKI

Katsuaki Asano (ICRR), Kohta Murase (Penn. State, YITP)

<u>Galaxy Clusters</u> <u>as Cosmic ray "reservoirs"</u>

 $\pi^{\pm} \rightarrow \nu_{\mu} \left(\overline{\nu_{\mu}} \right) + \mu^{\pm} \rightarrow e^{\pm} + \nu_{\mu} \left(\overline{\nu_{\mu}} \right) + \nu_{e} (\nu_{e})$

Galaxy clusters as the sources of high-energy CR, gamma, and neutrino

Neutrino "Upper Limit"

9.5-yr data of muon track events

the contribution from massive ($M_{500} \gtrsim 3 \times 10^{14} M_{\odot}$) clusters is less than ~5%.

a very deep limit, excludes some of previous theoretical models

Diffuse Radio Emission in Clusters

Giant Radio Halo	<u>Radio Relic</u>	<u>Mini Halo</u>
Coma [Bonafede+2022]	"Sausage" cluster	Perseus
Spherical	elongated	Spherical
~ 1Mpc	~ 1Mpc	~ 300 kpc
Merging clusters	Merging clusters	Relaxed clusters

Correlate with dynamical state of clusters

2023/11/6

particle acceleration & magnetic field amplification

Turbulent Re-acceleration Model

Radio halo: Coma cluster

model normalized by the radio observation of Coma

◆ gamma-ray upper limit (*Fermi*)
→ pure hadronic model without re-acceleration is excluded.
But, the re-acceleration of secondary *e* is possible.

Overview

constraints on the re-acceleration model

Re-acceleration of CRs

CR spectrum is significantly modified by re-acceleration

- CR proton affects the ``lifetime" of emission after re-acceleration
- Amount of CR proton can be constrained from the <u>statistics</u> of the non-thermal emission (i.e., radio emission)

Monte Carlo Merger Tree

• occurrence of RHs (~30-60%)

- Secondary electrons from pp collision
- → long lifetime (> 1 Gyr)
- \rightarrow need (1:3) mergers for re-acceleration
- Primary electrons (without proton)
- → short lifetime (<1 Gyr)
- \rightarrow need (1:10) mergers for re-acceleration

Luminosity-Mass relation

TTD model is consistent with the radio observation

observed radio halos are massive $M_{500} > 3 \times 10^{14} M_{\odot}$

merger + TTD acceleration for various *M*

$D_{pp} \propto M^{1/3}$

- magnetic field: $B \propto M^0$
- seed injection: $L_{CR}^{inj} \propto M^{5/3}$
- Fokker-Planck eq. (CRe and CRp)

Neutrino (100 TeV)

Diffuse Neutrino Background

model prediction is comparable to the upper limit
→ more optimistic models are excluded

Constraints on the re-acceleration model

<u>Summary</u>

Multi-messenger (Radio & Neutrino) limit on the Turbulent Re-acceleration Model

- Radio halo and turbulent re-acceleration
- secondary electrons can be the *seed* electrons
- merger-induced TTD acceleration predicts $D_{pp} \propto M^{1/3}$
- $P_{1.4} \propto M^{3.5}$ is consistent with radio observations

Neutrino upper limit

- massive $(M_{500} \sim 10^{15} M_{\odot})$ clusters dominate the neutrino background in re-acc. model
- however, massive clusters are constrained by the stacking analysis of ν_{μ} track events

Constraints on the re-acceleration model

- magnetic field $B < 1\mu$ G is excluded, if seed originates from pp
- a deeper limit (~1% of IC level) would completely exclude the secondary model