Integrated strategic framework on supernova theory and their multi-messenger observations

Hiroki Nagakura (NAOJ)

マルチメッセンジャー天文学の展開@東大宇宙線研、11月1-2日,2023

Core collapse supernova (CCSN)

Cosmic-rays

CasA (Supernova Remnant) Credit: Chandra

<u>EM waves</u> Gamma

UV Optical Infrared Radio

NEUTRON STAR ILLUSTRATION

Neutrino-driven explosion mechanism (aided by multi-dimensional fluid instabilities)

Explosions have been witnessed more often than not in 3D CCSN simulations

Explosion energy

(comparing between multi-D CCSN simulations and observations)

Burrows and Vartanyan 2021

Radice et al. 2019

kHz

Shibagaki et al. 2021

MMM I I I .

Mezzacappa et al. 2020

µ 10⁴¹

10⁴⁰

Gravitational Waves

Strong correlation between GWs and Proto-neutron star mass

Nagakura and Vartanyan 2023

Vartanyan et al. 2023

Neutrino signals

Some new features emerge in 3D explosion models

1. Explosion models have low neutrino
luminosity than those with non-explosions
(due to weak mass accretion)

2. The average energy of electro-type neutrinos and their anti-partners are lower in 3D than 1D.

3. Neutrino luminosity of heavy-leptonic neutrinos are higher in 3D than 1D.(due to PNS convection)

Useful formula:

$$\frac{L_{\nu 3D}}{L_{\nu 1D}} \sim \frac{\mathrm{T}_{\nu 3D}^{4} \mathrm{R}_{\nu 3D}^{2}}{\mathrm{T}_{\nu 1D}^{4} \mathrm{R}_{\nu 1D}^{2}}$$

Detector simulations of neutrino signal for Super-K (Hyper-K)

Strong correlation between E_{ν} and N_{cum} in each detector

Nagakura et al. 2021

$$\begin{split} [\mathrm{SK} - \mathrm{IBDp} - \mathrm{NORMAL}] \\ N_{\mathrm{Cum}} &= \left(220 \, E_{52} + 5 \, E_{52}^2 - 0.074 \, E_{52}^3 + 0.0003 \, E_{52}^4\right) \\ &\left(\frac{V}{32.5 \, \mathrm{ktons}}\right) \left(\frac{d}{10 \, \mathrm{kpc}}\right)^{-2} , \\ [\mathrm{DUNE} - \mathrm{CCAre} - \mathrm{NORMAL}] \\ N_{\mathrm{Cum}} &= \left(90 \, E_{52} + 4.5 \, E_{52}^2 - 0.062 \, E_{52}^3 + 0.00028 \, E_{52}^4\right) \\ &\left(\frac{V}{40 \, \mathrm{ktons}}\right) \left(\frac{d}{10 \, \mathrm{kpc}}\right)^{-2} , \\ [\mathrm{JUNO} - \mathrm{IBDp} - \mathrm{NORMAL}] \\ N_{\mathrm{Cum}} &= \left(165 \, E_{52} + 5.1 \, E_{52}^2 - 0.082 \, E_{52}^3 + 0.00039 \, E_{52}^4\right) \\ &\left(\frac{V}{20 \, \mathrm{ktons}}\right) \left(\frac{d}{10 \, \mathrm{kpc}}\right)^{-2} , \\ [\mathrm{IceCube} - \mathrm{IBDp} - \mathrm{NORMAL}] \\ N_{\mathrm{Cum}} &= \left(23000 \, E_{52} + 600 \, E_{52}^2 - 9 \, E_{52}^3 + 0.04 \, E_{52}^4\right) \\ &\left(\frac{V}{3.5 \, \mathrm{Mtons}}\right) \left(\frac{d}{10 \, \mathrm{kpc}}\right)^{-2} , \end{split}$$

E_v has a strong correlation to M_{PNS}

Nagakura and Vartanyan 2022

V Neutrino shock acceleration in CCSNe

Nagakura and Hotokezaka 2021 (See also Kazanas and Ellison 1981, Giovanoni et al. 1989)

Cumulative number of neutrino events at each detector

Early post-bounce phase < 30ms (all CCSN progenitors)

Late post-bounce phase (only cases with BH formation)

100

1<u>3</u>

200

✔ How can we get rid of the uncertainty of neutrino flavor conversion in neutrino signal?

✓ Neutrino flavor conversion in CCSN core seems to be more complex than what we have considered so far, due to collective neutrino oscillations.

Neutrino oscillations induced by self-interactions

Pantalone 1992, Duan et al. 2006

1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM.

3. Collective neutrino oscillation induced by neutrino-self interactions commonly occurs in CCSNe and BNSM environments.

Collective neutrino oscillations ubiquitously occur in CCSN core

Space-time diagram of ELN-angular crossings in CCSNe

Nagakura et al. 2021

Collective neutrino oscillation potentially gives a significant impact on both CCSN dynamics and neutrino signal

Correlation study of gravitational waves and neutrino signal Nagakura and Vartanyan 2023

Weak progenitor dependence in neutrino radiated-energy vs. detection count

Event counts depend on neutrino flavor conversion

Proto neutron star (PNS) mass is a key ingredient to characterize GW and neutrino signal

Irradiated neutrino energy versus time

Nagakura and Vartanyan 2022

 $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1$

Irradiated GW energy vs. PNS mass

Nagakura and Vartanyan 2023

Flow chart: joint analysis for neutrinos and GW signals

Summary:

- Multi-D CCSN simulations can offer successful explosion models without artifices.
- Based on these simulations, we can consider what physical ingredients can be extracted from observable signals.
- V Joint analysis of GWs and neutrinos can tell us about proto-neutron star evolution and place a constraint on neutrino oscillations in CCSNe.
- We are now extending our correlation study to include EM waves (stay tuned!).
- Information on complex physical processes inside CCSNe is imprinted in temporal variations and non-thermal spectra of neutrinos.