マルチメッセンジャー天文学の展開@ICRR, 11月2日

### Multi-Messenger Signal From Tidal Disruption Events

## Tatsuya Matsumoto (松本達矢)



Kyoto University, Dept. of Astronomy/Hakubi center



### **Tidal Disruption Events: Basics**





#### **Tidal Disruption Events: Observation**

X-ray TDEs (1990s~)





#### Tidal Disruption Events: Observation

60

X-ray Optical TDEs (2010s~) UV 50 Gamma-ray Cumulative number Optical 40 30 AT2018Ina 20 44.5 AT2019azh **PS1-10jh** 10 AT2019meg AT2019mha t-5/3 log[L<sub>BB</sub> (erg s<sup>-1</sup>)] PS1-11af 44.0 1995 2000 2005 2010 2015 2020 Year AT2019cho AT2019ahk PTF-09ge 43.5  $\checkmark$  In galactic nuclear region AT2019qiz (not AGN)  $\sqrt{Lopt \sim 1e + 44 erg/s(\sim L_{Edd})}$ 43.0 √T~30000K, Rbb~1e+15cm Gezari21 L~t<sup>-5/3</sup> 42.5 -100-50 50 100 150 0 200 **Days since peak** 

Emission mechanism: Reprocessing disk emission? Shock interaction? Cooling envelope?

#### Guolo+23



Figure 20. Distribution of peak  $L_{BB} \times early$  time  $L_X$  for different TDE populations. Squares show SRG/eROSITA (X-ray) discovered sources, circles show optically discovered X-ray detected, while diamonds show optically discovered with no X-ray detection. Filled markers represent detections in both UV/optical and X-rays (early times), while hollow symbols represent upper limits in one of the two wavelength bands, where the arrows represent their  $3\sigma$  upper limit. The colors are the same as in Fig. 19.



Rest-frame wavelength (Å) at z = 1.19325

#### Radio in TDEs: Equipartition analysis



=> Total Energy:  $E_{\text{tot}} \sim B^2 R^3 + N m_e c^2 \gamma \sim R^{11} + R^{-6}$ 



*R* should be  $\sim R_{eq}$  => Estimation of other quantities

#### Radio in TDEs: Equipartition analysis



=> Total Energy:  $E_{\text{tot}} \sim B^2 R^3 + N m_e c^2 \gamma \sim R^{11} + R^{-6}$ 



*R* should be  $\sim R_{eq}$  => Estimation of other quantities

### Jetted TDEs: Radio analysis



Equipartition analysis

 $\Gamma$ ~2-3 (Relativistic source!)  $E_{j,iso}$ ~1e+53 erg



### Detection(?) of high-energy neutrino



**AT 2019dsg**: Optical + <u>weak radio</u> Neutrino association @ **~150days** after opt. peak No jet signature in radio (~0.05c, ~1e+48erg) <sub>Cendes+21</sub>,

Matsumoto+22

### Detection(?) of high-energy neutrino



#### AT 2019fdr: Optical TDE Neutrino association @ ~150days after opt. peak

=> Late time (>100days) observation can be a key

#### Recent observation: Late radio flare



- Radio flare ~ 1000days
  after optical discovery
- Flux increases as t^5
- Origin?

**Delayed disk formation?** 

**Off-axis jet?** 



=> Total Energy:  $E_{tot} \sim B^2 R^3 + N m_e c^2 \gamma \sim R^{11} + R^{-6}$ 



Two minimizing radii corresponding to on/off-axis

### Late radio flare as off-axis jet

Apparent velocity is increasing  $\beta_{eq,N} = R_{eq}/t \sim 0.1c(t/1000 \text{ day})$ 



Future VLBI obs. will confirm or reject off-axis scenario

## Ubiquitous late radio flare



### Event rate

Sazonov+21,Yao+23

Andreoni+22

 $\begin{aligned} \mathcal{R}_{opt} \sim \mathcal{R}_{x} \sim 1000 \ / Gpc^{3} / yr \ (\sim 10^{-4} \ / galaxy / yr) \\ \mathcal{R}_{on-jet} \sim 0.01 \text{--} 0.1 \ / Gpc^{3} / yr \\ & \text{Beaming:} \ \mathit{f_{b}} \sim \theta^{2} \sim 0.01 \\ \mathcal{R}_{off-jet} \sim 1 \text{--} 10 \ / Gpc^{3} / yr \end{aligned}$ 

At most a few % of TDEs can have off-axis jet

Why jetted TDEs are so rare? (<1% <=> AGN:10%)

### Jet Breakout = Double alignment?



1. Observer's line of sight = jet axis :  $f_b \sim \theta_j^2$ 2. Stellar ang. mom. = BH spin :  $f_{LS} \sim \theta_{LS}^2 \sim \theta_j^2$ On-axis Successful Jet:  $\mathcal{R}_{on-jet}/\mathcal{R}_{TDE} \sim \theta_j^4 \sim 10^{-4} (\theta_j/0.1)^4$ 

# Summary

- Tidal Disruption Events: Optical/X-ray flares
  in calactic puckers represented by the second sec
  - in galactic nuclear regions.
- Only 4 jetted TDEs have been discovered.
- Radio emission: Powerful probe of outflows.
- High-energy neutrinos association(?)
  with optical (not jetted) TDEs at >~100 days.
- Late-time radio flares (>1000days):
  - ~1% of them are potentially off-axis jetted event
  - Most of them are delayed outflow?
- Rarity of jetted TDEs = "Double-alignment"?