Linking VLBI observation with GRMHD theory at all scales: Phenomenological models of black hole jets/accretion

Hung-Yi Pu BH astrophysics with VLBI workshop Jan 18th, 2021

Event Horizon Telescope

VLBI: story across many order of magnitude

Marscher+ 2008

LLAGN

Li, Yuan, & Xie 2016

RIAF (Radiatively Inefficient Accretion Flow): low accretion rate → insufficient interaction bt. ion & e-→ (1) geometrically thick accretion flow → (2) two temperature accretion flow

Ho 1999

LLAGN

Li, Yuan, & Xie 2016

syn radiation from e- with thermal & non-thermal energy distribution!

Ho 1999

LLAGN

Li, Yuan, & Xie 2016

thanks to low accretion rate: optically thin

Ho 1999

general relativistic magnetohydrodynamics the need of **GRMHD** simulations

- to simulate 3D structure of jet
- to simulate dynamical feature

applying radiative transfer to GRMHD simulations:

Mckineey & Gammie 04 **FUNNEL** *QNIM* **CORONA** BLACK HOLE DISK PLUNGING REGION -4 e et a 2004

the need of GRMHD simulations

- to simulate 3D structure of jet
- to simulate dynamical feature
- for RIAF, radiation contribution to the dynamics can be ignored
- <u>one-fluid simulation</u> has been actively developed since ~2000
- uncertainty for simulating radiation feature of two temperature flow + non-thermal syn. jet

Mao et al. 2017

EHT image library

(Ti/Te parametrization according to plasma beta) \bigcirc Ó \bigcirc Ô \mathbf{C} O Ō O C \bigcirc \bigcirc \bigcirc C \bigcirc C Ō (C O Ō Ō C O **O** C \bigcirc \bigcirc C Ō C O C

Ressler+ 2016 post-processing "two-fluid" GRMHD simulation of Sgr A*; thermal synchrotron images

how can phenomenological models help?

- usually semi-analytical: prompt, flexible, and heuristic (useful for demonstration and parameter search)
- a complementary way to study global properties of the jet (funnel) region
- wide applications: from horizon to large scale

why phenomenological models?

 Here we are talking about GRMHD models includes all GR features, model become SRMHD automatically far away from the source and gravity effect is negligible

why phenomenological models?

 Here we are talking about GRMHD models includes all GR features, model become SRMHD automatically far away from the source and gravity effect is negligible

- Not necessary works well if key features in not included, or the simplicity does not exist.
- What are the key feature for BH accretion/ jet?

outline

- Black hole structure/magnetosphere with RIAF environment
- accretion
 - numerical simulationsemi-analytical model

•jet

- numerical simulation
- semi-analytical model

credit: Shiokawa

black hole: spacetime structure

photon geodesics

extraction of BH rotational energy by magnetic fields

Penrose&Ford 71, Blanford&Znajeck 77, Takahashi+90

"stationary state"

more plasma —> accretion flow

accretion

initial magnetic field configuration does matter

McKinney & Narayan 07

FIG. 2b

Mckineey & Gammie 04

Hirose et al. 2004

GRMHD numerical simulation + GRRT

GRMHD numerical simulation + GRRT

phenomenological model + GRRT

$$Z = r \cos \theta$$
$$R = r \sin \theta$$
$$n_e = n_e^0 \exp\left(\frac{Z^2}{2(HR)^2}\right) r^{-1.1}$$
$$T_e = T_e^0 r^{-0.84}$$
$$\frac{B^2}{8\pi} = 0.1 \frac{n_e m_p c^2}{6r}$$

$$n_e^0 = 5e6(cm^{-3})$$

 $T_e^0 = 5.3e11(K)$
 $H = 0.1$
Keplerian rotation

Broderick+ 2006, Pu+ 2016, 2018

Modeling Sgr A*

*a=0, viewing angle =68° (Broderick et al.2011)

230GHz

Dynamical dependency

*effect of flow dynamics only

ſ			
	re	ρ_'	

rotation sub-Keplerian

Keplerian rotating

Pu+ 2016

Jet

accretion or jet ? compact or extended?

Jet axial distance (de-projected): z (pc)

Nakamura+18

Notes on the jet region

Hirose et al. 2004

Flow acceleration (I)

Hydrodynamics:

Flow acceleration (II)

A = AlfvenSM = slow magnetosonicFM = fast magnetosonic

Flow acceleration (II)

A = AlfvenSM = slow magnetosonicFM = fast magnetosonic

form MHD jet to GRMHD jet

McKinney 2006

Q: Is it possible to quickly approximate GRMHD flow structure in the funnel region?

Known MHD features

- fast-magnetosonic (FMS) point exist only when the magnetic flux decreases with distance (Takahashi & Shibata 1998, Tchekhovskoy et al. 2009)
- mass loading + force-free field = FMS surface exist and efficient MHD flow acceleration take place (Beskin et al. 1998, Beskin & Nokhrina 2006)

Pu & Takahashi 20: even without iteration, the approximation is good enough

a good approximation of the force-free field (Tchekhovskoy et al. 2008)

$$\Psi(r,\theta;p) = r^p(1-\cos\theta)$$

varying field line configuration

varying BH spin

varying BH spin

applying to VLBI observations

- dynamics vs. mass-loading; the later is treated as free parameter, as the injection of non-thermal electrons are unknown (see also Ogihara's talk)
- Could the <u>stagnation surface</u> be a possible injection site? (Pu+2018, Kawashima+2020)

applying to VLBI observations

- fiducial parameters for the following movies:
 - adopt similar mass and distance as M87 for LLAGN parameters, i=60 degree, beam size: 50x120 uas (GMVA observation for M87, Kim+18)
 - non-thermal electron with a distribution follows
 - 1. electron number follows power-law decay with distance
 - 2. more mass loading near the jet edges
 - 3. emission contributed only from black hole threading field lines

varying black hole spin

varying jet opening angle

86 GHz (jet emission only)

varying mass loading

86 GHz (jet emission only) 600 -600 -400 -400 200 -200 -0 -0 -200 -200 --400 -400 . -600 -0.2 mas -600 · -500 -250 250 -500 -250 250 500 0 500 0

beam direction matters!

summary

- key direction in VLBI: connecting horizon-scale to large scale accretion/ jet physics
- challenge: origin of non-thermal electrons, subsequent cooling, parameter space survey, shock, entrained and other physics beyond horizon scale
- Phenomenological models (with possible implement of new physics) for BH accretion and jet are ready for help!

*hypu@ntnu.edu.tw

