

GRBの 偏光

當真賢二 (東北大 学際研/天文専攻)

『ガンマ線バースト研究の新機軸』@宇宙線研究所 2017/11/21-23

AGN Jet Workshop 2018

"Dawn of a New Era for Black Hole Jets in Active Galaxies" Tohoku University, 1/25-27/2018 Registration Deadline: 12/17/2017

Event Horizon Telescope, East Asia VLBI Network,

IST image credit: NASA and the Hubble Heritage Team

Outline

- Theoretical issues on relativistic jets
- Physics of GRB polarization
 - Late-time optical (& radio) afterglow
 - Early-time optical afterglow
 - Prompt γ-ray emission
- Macronova polarization
- Summary

Relativistic Jets

Fixed

(當真 2017, 物理学会誌)

• GR MHD simulations (e.g. Komissarov 01; Koide+ 02; McKinney & Gammie 04; Barkov & Komissarov 08; Tchekhovskoy+ 11)

• Quasi-steady structure

- Poynting-dominated jet in funnel region
 - BH energy/AM extraction (Blandford & Znajek 1977)
 - \blacktriangleright B₀ >> B_p at far zone
 - Bulk acceleration by
 Lorentz force
 - Dissipation?
- Collimation by disk wind
- Outflow + inflow
 - Mass loading?
 - Density floor in simulations

GRB Polarization

Early-time afterglow: Liverpool, Kanata $\Pi_{L} \simeq 30\%$!! (Mundell+13), $\Pi_{L} \simeq 10\%$ (Steele+09), $\Pi_{L} \simeq 10\%$ (Uehara, KT, Kawabata+12) $\Pi_{L} < 8\%$ (Mundell+07)

Synchrotron emission

- Relativistic electrons with isotropic pitch-angle distribution
- Ordered B field (on scales larger than electrons' gyro-radii)

 $\ell_e / \gamma_e \simeq 3 \times 10^3 \ B^{-1} \ \mathrm{cm}$

- Linear polarization Π_L = p+1/(p+7/3) ~ 60-75%, with direction perpendicular to B & k
- Circular polarization is nearly canceled out: $\Pi_{\rm C} \simeq 1/\gamma_{\rm e} << 1$

(e.g. Rybicki & Lightman 79; Melrose 80)

Late-time afterglow polarization

 $\Pi_{L} \sim 1-3\%$ at $T \sim 1$ day \rightarrow B field is not ordered

(Covino+03)

Random B field parallel to shock plane

(Sari 99; Ghsellini & Lazzati 99)

(Sari 99; Ghisellini & Lazzati 99; Lazzati 06)

Consistent with the observed temporal change of pol. angle

(Wiersema, Covino, KT+14)

Faraday effects

- Polarization degree → B field structure (if synchrotron)
- Faraday effects in the source → B strength, density...

(cf. Rybicki & Lightman 79)

Faraday depolarization

$$\Delta \theta = \frac{e^3}{\pi m_e^2 c^2} nB \cos \theta \frac{1}{\nu^2} \Delta \ell \gtrsim \frac{\pi}{2}$$

1/

 $\Delta\theta(\nu) = \pi/2$

• Linear polarizations with different rotation angles are cancelled out

Late-time radio afterglow

Early-time optical afterglow

Kanata Telescope at Hiroshima U

Early-time polarization from the forward shock is high!! This implies the forward shock involves large-scale B fields (hydro-scale rather than plasma-scale)

(Uehara, KT, Kawabata+12)

Simulations of supernova remnants

Shock propagation in inhomogeneous external medium amplifies B field with hydro-scale

(T. Inoue, Shimoda, et al. 2013)

Faraday depolari for early afterglow?

Prompt emission

- Synchrotron emission?
 - ✓ Ordered B field (SO model)?
 - Random B field on plasma scale (SR model)?
- Photospheric emission?

(Ravasio et al. 2017 for GBM; see also Oganesyan et al. 2017 for BAT+XRT)

(Ghirlanda et al. 2007)

Observational results with GAP

Event name	П	2σ limit	Detection significance	PA change
GRB 100826A	$27 \pm 11\%$	> 6%	2.9σ	yes
GRB 110301A	$70\pm22\%$	> 31%	3.7σ	no
GRB 110721A	$84^{+16}_{-28}\%$	> 35%	3.3σ	no

Event name	$T_{90} [s]$	fluence $[erg cm^{-2}]$	$E_p \; [\text{keV}]$
GRB 100826A	$\simeq 150$	$(3.0 \pm 0.3) \times 10^{-4}$	606^{+134}_{-109}
GRB 110301A	$\simeq 5$	$(3.65 \pm 0.03) \times 10^{-5}$	$106.8^{+1.85}_{-1.75}$
GRB 110721A	$\simeq 24$	$(3.52 \pm 0.03) \times 10^{-5}$	393^{+199}_{-104}

SO model (syn ordered B)

(Lyutikov+03; Granot 03; KT, Sakamoto, Zhang+09; KT13)

- Polarization degree is sufficient
- Patchy emission may lead to PA changes
- Other B structures possible (Granot+12; Zhang & Yan 11)

SR model (syn random B)

- Random B field parallel to the shock plane
- $\Pi_L > 30\%$ requires a fine tuning of parameters

Theoretical Monte Carlo simulation

(KT, Sakamoto, Zhang et al. 2009)

Photospheric emission

Optically-thick radiation-dom. gas expansion & acceleration

Photospheric model

Radiation intensity is highly anisotropic in the fluid frame

- Prompt emission could be quasi-thermal emission
- Π_L can be high if matterdom. at photosphere (Beloborodov 11)
- Polarization properties similar to SR model
- Π_L > 30% requires a fine tuning of parameters
- See also Ito+14; Lundman+14

Implications for emission mechanism

- The SO model is favored, while the SR and photospheric emission requires fine tunings
- More accurate, more statistics needed
- Any bright bursts with low Π_L ? -> photospheric
- Correlation with spectral shape?

Polarization spectrum

is hard to detect

(Vurm & Beloborodov 15)

Faraday effects on prompt emission

- High PL detection → synchrotron with ordered B field
- High efficiency, high Ep → large amount of low-energy electrons (γ_e ~ 1) → strong Faraday rotation

$$\nu_V \simeq 100 \ \epsilon_B^{1/4} L_{52}^{3/4} r_{12}^{-1} \Gamma_{2.5}^{-1} \ \text{keV}$$

Future X-ray polarimetry would further constrain the emission mechanism (KT & Kakuwa in prep.)

Detection of circular polarization

Nava, Nakar & Piran 16)

(KT, loka & Nakamura 08)

Macronova polarization

Table 1 Results of the polarimetric campaign						
T- T _{GW} (days)	Q/I	U/I	Polarization (%)			
1.46	-0.0021 ± 0.0008	$+0.0046 \pm 0.0007$	0.50 ± 0.07			
2.45	-0.0025 ± 0.0016	$+0.0044 \pm 0.0032$	<0.58			
3.47	-0.0009 ± 0.0015	$+0.0034 \pm 0.0024$	<0.46			
5.46	-0.0029 ± 0.0033	$+0.0026 \pm 0.0050$	<0.84			
9.48	$+0.0412 \pm 0.0216$	-0.0095 ± 0.0126	<4.2			

- Upper limit (<0.5%) on intrinsic optical polarization
 - Red phase: Not inconsistent with opacity dominated by r-nuclei b-b transition (not by electron scattering)
 - Blue phase: r-nuclei-free ejecta does not appear very asymmetric
 - ✓ Dim GRB optical afterglow

More quantitative calculations could constrain geometry & Θ_v

(Covino, Wiersema, Fan, KT et al. 2017; Kyutoku et al. 2013; 2015)

(Metzger 2017)

Summary

- Late-time AG
 - $\Pi_{\rm C}$ detection: mystery
 - Radio AG: Faraday effects, ALMA!
- Early-time AG
 - High $\Pi_{\!\scriptscriptstyle L}$ implies ordered B field in jets
 - But some are not highly polarized
- Prompt emission
 - SO emission model & magnetically-dom. jet ?
 More data needed
- Macronova

Geometry & viewing angle could be constrained

降着円盤からの偏光

一般相対論的効果

(Stark & Connors 1977; Li+ 2009; Schnittman & Krolik 2009)

As will be discussed in § II, supernova atmospheres are likely to be scattering-opacity dominated. It is well known that scattering atmospheres can transform initially unpolarized light into partially linearly polarized light. Chandrasekhar (1960, 1946) calculated this effect for a plane-parallel electron scattering atmosphere and derived the degree of polarization of the emergent light as a function of the angle between the normal to the plane and the direction of view. An observation of a

We discuss the net polarization which is to be expected as a function of the degree of this asphericity in the sections which follow. In § II, we summarize the

GAmma-ray burst Polarimeter (GAP)

- Gamma-ray burst polarimeter (GAP) aboard IKAROS launched in 2010
- Designed for prompt emission polarimetry, w/ small systematic uncertainty of 1.8% (Yonetoku et al. 2011)
- 70-300keV
- 3 GRB polarizations detected

IBIS on INTEGRAL

Prompt optical emission

(Racusin+08, Nature)

Verification of CPT symmetry

Superstring theory, loop quantum gravity, ... → Lorentz invariance may be broken → CPT theorem not hold

Lorentz- and CPT- violating dispersion relation of photons (Myers & Pospelov 03)

$$E_{\pm}^2 = p^2 \left[1 \pm 2\xi \left(\frac{p}{M_{\rm pl}} \right) \right]$$

Faraday depolarization can reduce $\Pi_{\rm L}$ averaged over 70-300 keV range (GAP)

$$|\xi| < 2 \times 10^{-15}$$

$$|\xi| < 1 \times 10^{-16}$$

For GRB 110721A; luminosity distance estimated by Yonetoku relation

(KT, Mukohyama, Yonetoku+12)

For GRB 140206A with confirmed redshift (Gotz+14)

Gamma-Ray Bursts (GRBs)

History of gamma-ray polarimetry

RHESSI claim is controversial. INTEGRAL SPI and IBIS include results inconsistent with each other.

SH model

- Random B fields on hydrodynamic scales >> plasma scales (T. Inoue, Asano & Ioka 11; Gruzinov & Waxman 99)
- PA change is natural
- Π_L ~ 70%/√N
- But numerical simulations indicate N ~ 10³, too high

Simulation of internal shock with inhomogeneous density

Highly anisotropic pitch angles?

Electromagnetic jet

(KT 2016, IAU324, arXiv:1611.09447)

GRB jets

- AGN jets are optically thin, then cannot be driven thermally
- Thermal (neutrino driven) jets are not favored for GRB jets

(Leng & Giannios 2014; see also Tchekhovskoy & Giannios 2015)