Neutron star mergers and kilonovae 連星中性子星合体とキロノバ

Masaomi Tanaka

(National Astronomical Observatory of Japan)

コラム まだ名前もない天体

倍」 違うのです。 "macronova"と呼んでいます。novaよりもスケールが大きい(マクロ)という意味合 ぐらい明るいことが予想されることから名づけられたようです。一方、違うグループは に最近登場したため、まだ名前がありません。実際の研究現場でも人によって呼び名が いですね。 エネルギーを使って光る、超新星のような現象を紹介しました。実はこの現象、 この章では、中性子星の合体により飛び出した物質の中でアプロセスが起き、 の意味で、新星(nova, 3章で登場した超新星と区別された天体)より 1000 あるグループは、"kilonova"と呼んでいます。 この"kilo" は「1000 放射性 あまり

金をつくるので「金新星」なんていうのはどうでしょうか? おそらく金はつくられてい 然かもしれません。 らわしい言葉になってしまいますね。 るでしょうが、もし中性子星の合体が宇宙のほんの一部の金しかつくっていなかったら紛 かイマイチですね。 ではこれを日本語にすると……それぞれ「千新星」と「巨新星」でしょうか? ただ、 ドプロセスが起きて初めて光るので「ドプロセス新星」というのが自 rプロセスを知らない人にはやや難しい言葉ですね。 いっそ、 なんだ

です。 前も10年後にどうなっているか、楽しみにしようと思います。 してきて輝き、あっという間に消えてしまう現象にピッタリだと思いませんか? この名 ら飛び出してくる物質なので、その速度が普通の超新星よりも速いことは絶対に正しそう というわけで、この本ではこの天体を「超速新星」と名づけました。 しかも、 rプロセスは「速い」中性子捕獲反応でしたね。激しい合体により飛び出 中性子星の表面か

キロノバ? マクロノバ?

Neutron star mergers and kilonovae

Optical and NIR observations of GW170817
 Lessons from GW170817
 Related works

J-GEM

Japanese collaboration for Gravitational-wave Electro-Magnetic follow-up (MOU w/ LIGO/Virgo Collaboration in 2014)

Okayama 0.91m

Okayama 1.88m

Hiroshima 1.5m

Subaru 8.2m

Kiso 1m (wide field)

HSC (wide field)

MOA-II 1.8m (wide field, south)

IRSF 1.4m (south)

The first alert

TITLE: GCN CIRCULAR NUMBER: 21505 SUBJECT: Fermi GBM trigger 524666471/170817529: LIGO/Virgo Identification of a possible gravitational-wave counterpart DATE: 17/08/17 13:21:42 GMT 22:21 (JST) FROM: Reed Clasey Essick at MIT <ressick@mit.edu>

The LIGO Scientific Collaboration and the Virgo Collaboration report:

The online CBC pipeline (gstlal) has made a preliminary identification of a GW candidate associated with the time of Fermi GBM trigger 524666471/170817529 at gps time 1187008884.47 (Thu Aug 17 12:41:06 GMT 2017) with RA=186.62deg Dec=-48.84deg and an error radius of 17.45deg. 21:41 (JST)

The candidate is consistent with a neutron star binary coalescence with False Alarm Rate of ~1/10,000 years.

An offline analysis is ongoing. Any significant updates will be provided by a new Circular.

The initial skymap (only from LIGO/Hanford)

*LIGO/Livingstone data suffer from a glitch

Skymap from 3 detectors (LIGO x 2 + Virgo) ==> 30 deg² (~40 Mpc)

LIGO Scientific Collaboration and Virgo Collaboration, 2017

Electromagnetic counterpart of GW170817 @ 40 Mpc

SSS17a (Coulter+17; Sibert+17; Arcavi+17, ...)

2017.08.18-19 2017.08.24-25

Subaru/HSC z +IRSF/SIRIUS H, Ks

(Utsumi, MT et al. 2017, PASJ)

Survey with Subaru/HSC

Tominaga, MT et al. 2017, PASJ, arXiv:1710.05865 DECam: Soares-Santos et al. 2017

Neutron star mergers and kilonovae

Optical and NIR observations of GW170817
 Lessons from GW170817
 Related works

Dynamical ejecta (~< 10 ms)

Rosswog+99, Lee+07, Goriely+11, Hotokezaka+13, Bauswein+13, Radice+16...

- Mej ~ 10⁻³ 10⁻² Msun
- v ~ 0.1-0.2 c
- wide Ye

Post-merger ejecta (~< 100 ms)

Fernandez+13,15, Perego+14, Kiuchi+14,15, Martin+15, Just+15, Wu+16, Siegel & Metzger 17...

- Mej >~ 10⁻³ Msun
- v ~ 0.05 c
- can be higher Ye

Expected light curves of kilonova

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Smooth spectra

Kasen+13, Barnes & Kasen 13 MT & Hotokezaka 13, MT+14,

Expected spectrum

Extremely broad-line (feature-less) spectra

Bound-bound opacities of lanthanide elements

к (p shell) << к (d shell) << к (f shell)

MT+17

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

- Low Ye => stronger r-process
- Neutrino absorption increases Ye

Nucleosynthesis are imprinted in the spectra

"Blue kilonova"

High Ye (0.30) (Lanthanide-free)

Medium Ye (0.25)

"Red kilonova" Low Ye (Lanthanide-rich)

GW170817: light curves

- Brightness
- Timescale
- SED

Model: MT+17b

Data: Utsumi, MT+17, Drout+17, Pian+17, Arcavi+17, Evans+17, Smartt+17, Diaz+17, Valenti+17, Cowperthwaite+17, Tanvir+17, Troja+17, Kasliwal+17

Ejecta mass (La-rich) ~0.03 Msun => post-merger ejecta?

Constraints to the opacities

Timescale

Bolometric light curves

Kasliwal+17

Presence of "blue" kilonova

Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Villar et al. 2017

Mej ~ 0.02 Msun? => Additional energy deposition by jets?

Ioka-san's talk, Ioka & Nakamura 2017

v ~ 0.3c ??

(estimate with BB radii is uncertain, spectra depends on density distribution)

Rosswog+17 see also Hotokezaka+15

Many open questions

- What is the origin of high ejecta mass?
 - Viscous ejection?
- What is the origin of "blue" component?
 - Additional energy injection? (Cocoon?)
- What is the abundance patterns?
 - Consistent with solar abundances?
- What is the final remnant (BH or NS)?
 - Effects to Ye
- What happens for different total masses, mass ratios, and BH-NS merger?

Need more observations with different masses and viewing angles

Variety of red component?

Kasliwal+17

Neutron star mergers and kilonovae

Optical and NIR observations of GW170817
 Lessons from GW170817
 Related works

"Universality" of r-process abundances

Sneden+2008

NS mergers produce solar abundances??

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

Colors of kilonova should depend on a viewing angle

=> More events with different viewing angles!

Shibata+17 Fujibayashi+17

			Kasen+13: Sn II, Ce II-III, Nd I-IV, Os II														
open	open s shell		Fontes+17: Ce I-IV, Nd I-IV, Sm I-IV, U I-IV														
(l=1)			Wol	laege	e r+1 7	7: Se,											
1			MT+17. Se I-III Ru I-III Te I-III Nd I-III Er I-											open p-shell (l=2)			
Ħ						II, IXU	, <u>11–111</u>						не				
3	4											5	6	7	8	9	10
	Be	se in the second se									В		N	O	F	Ne	
11	12 open d-shell								13	14	15	16	17	18			
Na	Mg						(I=3)					AI	Si	Ρ	S		Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	SC		V	Cr	Mn	Fe	CO	Ni	Cu	Zn	Ga	Ge	As	Se	B	pear
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	2nc	l peak
55	56	57~71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	lr	pşr	ape	ak g		Pb	Bi	Po	At	Rn
87	88	89~103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
			57	5.8	50	60	61	62	62	61	65	66	67	68	60	70	71
			ג <i>ו</i>	Ср	Pr	Nd	² m	Sm^{02}	FII	Gd	Th	Dv	ΗΛ	Fr	Tm	Yh	
onon f chall		holl	20 80	90			03	9 <u>4</u>	05_	96	07_	98 08	90	100	101_	102	103
(l=4)			Ac	Th	Pa_		Nn	PIL	Am	Cm	Rk_	Cf	Fs_	Fm	Md	No	 r
							·Ρ										

Atomic structure calculations

HULLAC code (Bar-Shalom+99) GRASP2K code (Jonsson+13)

$$H_{DC} = \sum_{i=1}^{N} \left(c \boldsymbol{\alpha}_{i} \cdot \boldsymbol{p}_{i} + (\beta_{i} - 1)c^{2} + V_{i}^{N} \right) + \sum_{i>j}^{N} \frac{1}{r_{ij}}$$

Se I-III (Z=34, p) Ru I-III (Z=44, d) Te I-III (Z=52, p) Nd I-III (Z=60, f) Er I-III (Z=68, f)

Ion	Configurations	Number of levels	Number of lines
HULLAC	2		
Se I	$4s^{2}4p^{4}, 4s^{2}4p^{3}(4d, 4f, 5-8l), 4s4p^{5}, 4s4p^{4}(4d, 4f), 4s^{2}4p^{2}(4d^{2}, 4d4f, 4f^{2}), 4s4p^{3}(4d^{2}, 4d4f, 4f^{2})$	3076	973,168
Se II		2181	511,911
Se III	$4s^{2}4p^{2}, 4s^{2}4p(4d, 4f, 5-8l), 4s4p^{3}, 4s4p^{2}(4d, 4f), 4s4p^{3}, 4s4p^{2}(4d, 4f), 4s^{2}(4d^{2}, 4d^{2}, 4d^{4}, 4f^{2})$	922	92,132
Ru I	$4d^{7}5s, 4d^{6}5s^{6}, 4d^{8}, 4d^{7}(5p, 5d, 6s, 6p),$ $4d^{6}5s(5p, 5d, 6s)$	$1,\!545$	$250,\!476$
Ru II	$4d^{7}, 4d^{6}(5s-5d, 6s, 6p)$	818	76.592
Ru III	$4d^{6}, 4d^{5}(5s-5d,6s)$	728	49,066
Te I	$5s^{2}5p^{4}, 5s^{2}5p^{3}(4f, 5d, 5f, 6s - 6f, 7s - 7d, 8s),$	329	$14,\!482$
Te II	$5s5p^{5}$ $5s^{2}5p^{3}$, $5s^{2}5p^{2}(4f, 5d, 5f, 6s - 6f, 7s - 7d, 8s)$,	253	$9,\!167$
Te III	$5s_{2}p_{1}^{2}$ $5s_{2}p_{2}^{2}$, $5s_{2}p_{3}(5d, 6s - 6d, 7s)$, $5s_{5}p_{3}^{3}$	57	419
Nd I	$4f^{4}6s^{2}, 4f^{4}6s(5d, 6p, 7s), 4f^{4}5d^{2}, 4f^{4}5d6p, 4f^{3}5d6s^{2}, 4f^{3}5d^{2}(6s, 6p), 4f^{3}5d6s6p$	31,358	70,366,259
Nd II		6,888	$3,\!951,\!882$
Nd III	$4f^{2}5d^{2}, 4f^{2}5d0p$ $4f^{4}, 4f^{3}(5d, 6s, 6p), 4f^{2}5d^{2}, 4f^{2}5d(6s, 6p),$	2252	458,161
Er 1	$\begin{array}{l} 4f^{2}6s6p \\ \mathbf{4f^{12}6s^{2}}, \ \mathbf{4f^{12}6s(5d, 6p, 6d, 7s, 8s)}, \end{array}$	$10,\!535$	$9,\!247,\!777$
Er 11	$4f^{11}6s^{2}(5d,6p), 4f^{11}5d^{2}6s, 4f^{11}5d6s(6p,7s)$ $4f^{12}6s, 4f^{12}(5d,6p), 4f^{11}6s^{2}, 4f^{11}6s(5d,6p),$ $4f^{11}5d^{2} + 4f^{11}5d6p$	5,333	$2,\!432,\!665$
Er III	$4f^{12}, 4f^{11}(5d, 6s, 6p)$	723	$42,\!671$

Energy levels of Nd II

Bound-bound opacity

к (p shell) << к (d shell) << к (f shell)

MT, Kato, Gaigalas, Rynkun, Radziute, Wanajo, Sekiguchi, Nakamura, Tanuma, Murakami, Sakaue 2017 (arXiv:1708.09101) HULLAC 10² => Application to GW170817 (MT+17b)

New atomic calculations (Kasen et al. 2017)

All lanthanide elements (neutral to +4 ion)

MT+17

Chornock+17

Kasen+17

Summary

Lessons learned from GW170817

- Red and blue component
- Mej (La-rich) ~ 0.03 Msun ==> post-merger?
- Mej (La-poor) ~ 0.02 Msun ==> origin? jet?
- Wide range of r-process elements in NS mergers

Future

- More events with different masses, mass ratios, viewing angle as well as BH-NS mergers
- Origin of r-process elements? => Test of solar pattern
 => atomic data are crucial (theory + experiments)