

The coincident event search using TAMA300 and LISM data

Hirotaka Takahashi

(Osaka University / Niigata University)

Hideyuki Tagoshi ^A, Hiroyuki Nakano ^A, Nobuyuki Kanda ^B, Daisuke Tatsumi ^C, Shuichi Sato ^C, Yoshiki Tsunesada ^C, Takahiro Tanaka ^D, Masatake Ohashi ^E, Souichi Telada ^F and The TAMA Collaboration

Osaka University ^A, Osaka City University ^B, National Astronomical Observatory ^C, Kyoto University ^D, University of Tokyo ^E, National Institute of Advanced Industrial Science and Technology ^F

03/2/6 TAMA symposium @ ICRR

Introduction

• TAMA and LISM observed during August 1, 2001 and September 20, 2001(JST) (Data Taking 6)

TAMA	LISM Operated mainly by people in ICRR (Univ. of Tokyo)	
Location : Mitaka campus	Location : Kamioka mine, Gifu	
of NAOJ		
Baseline length : 300m	Baseline length : 20m	
Best sensitivity: $5 \times 10^{-21} [1/\sqrt{Hz}]$	Best sensitivity: $6.5 \times 10^{-20} [1/\sqrt{Hz}]$	
Observation: 8/1 - 9/20 /2001	Observation: 8/1 - 8/23 /2001	
	9/3 - 9/17 /2001	
Total length of data ~ 1038hou	rs Total length of data ~ 777 hours	

• We have tried a coincident event search for inspiraling compact binaries using TAMA and LISM data.

Location of TAMA and LISM

	orientation	latitude	longitude
TAMA	225 °	35.68 ° N	139.54 ° E
LISM	165 °	36.25 ° N	137.18 ° E

- Distance between TAMA and LISM ~ 220km
- Maximum delay of signal arrival time ~ 0.73msec
- Relation between TAMA and LISM arms direction

Coalescing compact binaries

Inspiral phase of coalescing compact binaries are main target because expected event rate of NS-NS merger :a few within 200Mpc / year , well known waveform etc.

In this search, mass region: $1.0M_{solar} \le m_1, m_2 \le 2.0M_{solar}$

Matched Filter

- Detector outputs: s(t) = Ah(t) + n(t)
 - h(t): known gravitational waveform (template) n(t): noise 2.5Post-Newtonian
- Outputs of matched filter:

$$\rho(m_1, m_2, t_c \ldots) = 2 \int \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_h(f)} df = \left(s \mid h\right)$$

noise spectrum density : $S_h(f)$

- signal to noise ratio: $SNR = \frac{\rho}{\sqrt{2}}$
- Matched filtering is the process to find the optimal parameters which realize $\max_{m_1,m_2,t_c...}(\rho(m_1,m_2,t_c...))$

χ^2

Ref:B.Allen et al. , Phys. Rev. Lett. , 83, 1489 (1999)

- Divide frequency region into bins.
- Test whether the contribution to ρ from each bins agree with that expected from chirp signal.

$$\rho_{1} \qquad \rho_{2} \qquad \rho_{3} \qquad \rho_{4} \qquad \rho_{5} \qquad \cdots$$

$$f_{\min} \qquad f_{1} \qquad f_{2} \qquad f_{3} \qquad f_{4} \qquad f_{5} \qquad \cdots$$

$$f_{\max} \qquad \rho \equiv (s,h) \qquad \uparrow = 2 \left[\frac{\tilde{s}(f)\tilde{h}^{*}(f)}{S_{n}(f)} df \right]$$

$$\chi^{2} \equiv \sum \frac{1}{\sigma_{i}^{2}} (\rho_{i} - \overline{\rho_{i}})^{2}$$

$$\sigma_{i}^{2} \equiv \left\langle \left(\rho_{i} - \overline{\rho_{i}}\right)^{2} \right\rangle, \quad \overline{\rho_{i}} = \left\langle \rho_{i} \right\rangle$$

TAMA - LISM Analysis Algorithm

TAMA

LISM

$\rho - (\chi^2)^{\frac{1}{2}}$ Scatter plots with TAMA for common lock parts

$\rho - (\chi^2)^{\frac{1}{2}}$ Scatter plots with LISM for common lock parts

There are 142465 events.

Coincident Event Search

•We compared candidate event list and required parameter consistency.

"time" coincidence Maximal delay for arrival time : $\Delta t_{dis} = 0.73 m \sec \theta$ Parameter-estimation errors of t_c : $\Delta t_{cnoise} \leftarrow$ Fisher matrix Time window : $\Delta t_{cwin} = \Delta t_{cnoise} + \Delta t_{dis}$ if $|t_c^{tama} - t_c^{lism}| < \Delta t_{cwin} \Rightarrow$ candidate events "mass" coincidence Mass parameter window : $(\Delta M, \Delta \eta) \leftarrow$ Fisher matrix if $|M_{tama} - M_{lism}| < \Delta M$, $|\eta_{tama} - \eta_{lism}| < \Delta \eta \Rightarrow$ candidate events "amplitude (ρ) " coincidence if $-\rho_{simu} - \rho_{sen} \leq \log(\rho_{tama}) - \log(\rho_{lism}) \leq \rho_{simu} - \rho_{sens}$ ρ_{simu} :derived from galactic simulation ρ_{sens} : derived from difference of detector sensitivity candidate évents

Results of coincident event search

A technique to evaluate the average number of accidental coincidences

Ref:E.Amaldi et al. ,A&A. ,216, 325 (1989) Ref:P.Astone et al. ,Phtys Rev.D ,59, 122001 (1999)

• It is possible to measure the number of accidental coincidences experimentally by usual procedure of shifting one of the two sets of data by a time δt and determining the number of coincidences $n(\delta t)$. δt is usually referred "time delay"

The accidental distribution derived from time delay histogram

Results of coincident event search

Sidereal time analysis for TAMA-LISM coincidence

• Over the events survived time, mass and amplitude coincidence, we plot 24-hours histogram of coincidence events versus sidereal time.

Coincident event search upper limit (1)

We propose a method to evaluate the upper limit to the Galactic event rate for coincidence analysis.

- Since LISM's sensitivity does not cover all of Galactic events, we evaluate upper limit to the galactic event rate using the results of the TAMA-LISM coincidence analysis for the purpose of a test for this method.
- Since LISM's sensitivity is one order lower than TAMA, we only consider Galactic events within 1kpc.

Coincident event search upper limit (2)

Upper limit to the Galactic event rate is given by $\frac{N}{T \epsilon}$

- N : upper limit to the average number of real events over certain threshold
- T : length of data [hours]
- : detection efficiency

Coincident event search upper limit (3)

• The first, we evaluated **upper limit to the average number N of real events over certain threshold.**

Assuming Poisson distribution for the number of real/fake events over threshold, we can obtain the average number N by

$$\frac{e^{-(N+N_{bg})}\sum_{n=0}^{n=N_{obs}}\frac{(N+N_{bg})^{n}}{n!}}{e^{-N_{bg}}\sum_{n=0}^{n=N_{obs}}\frac{(N+N_{bg})^{n}}{n!}}{n!} = 1 - C L$$

ref:e.g. Particle Data Group, *Review of Particle Physics*, Phys. Lett. **B204**, 81 (1998)

 N_{obs} : observed number of events over threshold N_{bg} : expected number of fake events over threshold

In order to set the threshold, we draw a $\sqrt[\rho_{tama}] = \sqrt[\rho_{lism}]{\sqrt{\chi^2_{tama}}}$ scatter plots.

TAMA – LISM coincident results

Coincident event search upper limit (4)

From above figure, we set threshold for each detector, TAMA threshold : $\rho_{tama} / \sqrt{\chi^2_{tama}} = 6.2$ LISM threshold : $\rho_{lism} / \sqrt{\chi^2_{lism}} = 5.3$ Observed number of events over threshold: Nobs=0 Expected number of fake events over threshold: N_{bg} =0.72

We can obtain the average number of events over threshold N=2.3 (C.L.=90%)

- The second, we evaluated **detection efficiency** we performed a Galactic event simulation (within 1kpc). Setting above thresholds, we can obtain the probability that we observe events over the each detector's threshold (namely detection efficiency) $\implies = 0.22$
- Length of data : T=244 hours

TAMA + LISM case Upper limit to the Galactic (within 1kpc) event rate : N/T = 0.042 events/hour (C.L. 90%)

c.f. : TAMA only case : 0.0094 events/hour (C.L. 90%) c.f. : LISM only case : 0.096 events/hour (C.L. 90%)

Conclusion & Discussion

1.We performed a coincident event search for inspiraling compact star binaries using TAMA300 and LISM data. (mass range : $1.0M_{solar} \le m_1, m_2 \le 2.0M_{solar}$) No significant coincidence excess was observed. Our results are consistent with accidental coincidence.

2. We proposed a method to evaluate the upper limit to the Galactic event rate from coincidence analysis. This method can be applied even in the multiple detector coincidence case straightforwardly.