Mirror LCGT Technical advisory committee

Takashi Uchiyama ICRR, the University of Tokyo 2005/08/19

Contents

- LCGT mirror
- Mirror thermal noise and cryogenic
- Thermal lensing
- Optical property absorption
- Make the mirror substrate, polishing and coating
- Summary of the mirror

LCGT mirror

- LCGT uses sapphire mirrors.
- Sapphire: Φ250×150、 30kg.
- Coating: SiO2/Ta2O5.
 - Front mirror 99.6% reflectance.
 - End mirror 99.995% reflectance.
- End mirror has curvature of several km.
- Cooled at 20K.

Mirror thermal noise

Cryogenic cooled sapphire mirror makes possible low mirror thermal noise level.

Mirror thermal noise 2

- There are three kinds of mirror thermal noise.
- Structure damping in the substrate.
 - Low T and high mechanical Q.
- Structure damping in the coating.
 - Low T and low Dissipation.
- Thermoelastic damping in the substrate.
 - Low T and thermal expansion ratio.

Temperature independent.

Thermal expansion ratio

Temperature dependence of the mirror thermal noise at 100Hz 20 K is the target temperature.

Thermal lensing

- Thermal lensing effect
 - High power laser makes temperature gradient in the mirror.
 - Refraction index changes with temperature.
 - Refraction index gradient will appear. It act as a lens.
- Sapphire mirror
 - High thermal conductivity: 4×10³W/m/K at 20K.
 - Low temperature dependence of refraction index:
 - $\beta < |9 \times 10^{-8}| / K \text{ at } 20 K_{(T.Tomaru)}$.
- 10000 times smaller than in room temperature !!

Optical property - absorption -

- Laser absorption is important factor for cooling.
- LCGT target
 - Substrate: 20ppm/cm \rightarrow 250mW
 - Coating: Ippm \rightarrow 40mW
- Current status
 - Substrate : 40 60ppm/cm (CSI Hemex white grade)
 - 20 30ppm/cm (use annealing) (R. K. Route et al., LIGO-G040084-00-Z)
 - Coating: Ippm (R.K. Route et al., LIGO-G030023-00-Z)
 Absorption is close to the target value even now.

Our current cryogenic design is possible to cool the mirror, even if the substrate has 60ppm/cm absorption.

Make the mirror I - substrate -

- Substrate (Φ250×150).
- Crystal Systems Inc.
- Heat Exchanger Method.
- Φ 330, 65kg sample is possible.
- Effort for the quality up is still valuable.

Make the mirror 2 - polish -

- CSIRO or Canon Inc.
- Micro roughness < IÅ
- RMS I.0nm.
- Curvature of 9000m has been made for TAMA power recycling mirror (fused silica).

PV: 5.9 nm RMS: 1.0 nm

(G. Billingsley et al., LIGO-G030007-01-D)

Make the mirror 3 - coating -

- Japan Aviation
 Electronics Industry Ltd.
- Ion beam sputtering machine.
- $\Phi 250$ sample is possible.
- Finesse of 25000 has been achieved (fused silica).
- Low loss and high reflective coating is possible.

IBS at NAO

Make the mirror 4 - Sapphire mirror for CLIK -

- Cryogenic Laser Interferometer in Kashiwa.
- 7m Fabry-Perot cavity.
- Sapphire mirror Φ100×60 (CSI).
- R=30286mm (30m requested) has achieved (Canon).
- Waviness < $\lambda/4$.
- Roughness < 10 Å.
- Finnese of 3142 and reflectivity of 99.9% have achieved.

Summary of the mirror

- LCGT uses the sapphire mirror.
- The mirror thermal noise is much lower than the design sensitivity, when the mirror is cooled at 20K.
- Technical issues for realizing the LCGT mirror are overcome in study of the past projects.
- We are ready for making the mirror.