

ZHEIHEIHE Kamioka underground

Strategy to Detect GW

LONG N.Kanda / Osaka City Univ. LCGT collaboration

ESTIMATION Cryogenic mirror

Gravitational Wave Sources; Feasibility and Physics on Detections

Source study started during TAMA analysis...

	COURCO	waveform	feasibility study			
	source		detection	extract info.	Physics / Astro.Phys.	
	NS (BH) binary	Inspiral	Range : 240 Mpc (max) Rate (# of events/3yr) : ?	Arrival time : $\Delta t < 1$ msec direction : $\Delta \theta \sim 1-2$ degree Mass resolution : $\Delta M/M < ?$ %	population host galaxy ? formation of NS binary	
		Merger		waveform : $h(t)$ or $h(f)$ with accuracy of $\Delta h/h$ ISCO : $\Delta f/f $	viscosity,density,etc. of NS -> Equation of State	
B	Black-Hole	ringdown	3% energy loss -> Range : Mass Region : 10? –1000 Msol	ΔM/M < 10% Δa/a <	excitation of BH Intermediate mass BH mass spectroscopy formation of BH	
S ((upernovae GRB? etc.)	Burst	Range : Rate (=SNR in our galaxy x Range x SII rate)	waveform, : $h(t)$, $h(f)$ Arrival time : Δt	numerical model of core core structure EOS	
(b	ackground)	Stochastic	Ωgw (<- power spectrum, cross talk of two LCGT detector)		string cosmology, nuclear synthesis, etc.	
	Pulsar	continuous	max SNR (<- know pulsars)	accuracy of dP/dt /P	model of spindown of NS	

Target GW Sources

frequency [Hz]

Binary Coalescence : Most Promised Source

Rate of Binary Coalescence

Detection Range & Event Rate of Binary Inspiral GW

Detection Scheme : Matched Filter

Known wave form

- coalescence of compact binaries ;
- NS-NS, NS-BH, BH-BH, PBMACHO

Known noise spectrum in Fourier domain

Linear system

- signal: s(t) = n(t) + a h(t)
- noise component :n(t), GW signal: a h(t)
- average noise power spectrum: Sh(f)
- template waveform: h(t)
- signal-to-noise ratio:
- chi^2 test

 $\langle h, s \rangle = 2 \int \frac{h^* \cdot \tilde{s}}{S_h} df$

$$SNR = \sqrt{\langle h_+, s \rangle^2 + \langle h_\times, s \rangle^2} / \sqrt{2}$$

Require 10⁵ templates and 10¹¹ flops at least

With LCGT:

• mass

- neutron star raduius, viscosity, etc.
- BH? or hyper massive neutron star ? (Physics on merger phase & after)

With International GW detector network:

- direction
- distance

Black-hole Quasi-Normal Mode : Ringdown GW

Waveform: Damped sinusoid (Quasi-normal modes)

$$h(t) = \exp(-\pi f_c t/Q) \sin(2\pi f_c t)$$

central frequency	$f_{a} = \frac{3.2 \times 10^{4} [\text{Hz}]}{[1 - 1]^{4}}$	$(1-a)^{0.3}$] Echavarria (1000)
Quality factor	M/M_{\odot} M/M_{\odot} $Q = 2.0(1-a)^{-0.45}$	M: Mass a: Spin

* Probe for BH direct observation

* BH physics in inspiral-merger, core collapses, ...

-> BH mass & Kerr parameters

Stellar-core collapse : Burst GW

cf: Dimmelmeier, et al. (2002)

Some known pulsars expected to detect or to give upper limit which better than theoretical arrowed.

Pulsar	dist.	freq	h upper limit
	[kpc]	[Hz]	with 1 year of LCGT
Crab	2.0	60	1.1×10^{-27}
Vela	0.5	22	$7.3 imes10^{-27}$
1951 + 32	2.5	<mark>50</mark>	$1.5 imes 10^{-27}$
1706-44	1.8	20	$8.8 imes 10^{-27}$
1509-58	4.4	13	$2.1 imes 10^{-26}$
0540-69	4.9	40	$2.2 imes 10^{-27}$
1823-13	4.1	20	$8.8 imes 10^{-27}$
1046-58	3.0	16	1.4×10^{-26}
1259-63	4.6	42	$2.0 imes10^{-27}$
1800-21	3.9	15	$1.6 imes 10^{-26}$
	0.15	347	$1.0 imes 10^{-27}$
1757-24	4.6	16	$1.4 imes 10^{-26}$

Stochastic GW

$$h_{min}^{1d} = (2fS_n(f)/F)^{1/2}$$

$$h_{min}^{2d} \simeq 1.12 \times 10^{-2} h_{min}^{1d}(f) \left(\frac{1\text{Hz}}{\Delta f}\right)^{1/2} \left(\frac{1\text{yr}}{T}\right)^{1/4}$$

Sensitivity : h_f(100Hz) ~ 4.4 x 10⁻²⁴ [/rHz]

Single interferometer

- $h^{1d}_{min}(100 \text{ Hz}) = 3.9 \text{ x } 10^{-23}$
- h₀² Ω_{gw}^{1d} (100Hz) ~ 3.8 x 10⁻⁵

Twin interferometers

- 1yr integration, freq. band: 100Hz
- $h^{2d}_{min}(100 \text{ Hz}) = 1.4 \text{ x } 10^{-25}$
- h₀² Ω_{gw}^{2d} (100Hz) ~ 4.8 x 10⁻¹⁰

Sources Remarks

Target Sorces:

 Binary Coalescence (Typically, Search with Inspiral)

most promising. We expect several events/year.

BH Ringdown

interest probe for Black-hole.

Burst

promising sources with other observations

Continuous

Know pulsars be a candidates.

Stochastic

The results will have enough meaning comparing with theories.

How does the Twin Interferometers behave?

Redundancy of GW evidence

 Both Interferometers should detect at same; arrival time amplitude waveform

Stochastic GW Search(,also for any GW sources)

- Correlation of two interferometer give different order of search performance
- Closed placed detectors have a wider frequency band

Coincidence Strategy

More strategies: Coherence, Correlation

Coherence

• log likely-hood sum of two outputs $\sum_{I=1}^{N} \ln \lambda_{(I)} = \sum \left\{ \left\langle h^{(I)}, s^{I} \right\rangle_{(I)} - \frac{1}{2} \left\langle s^{I}, s^{I} \right\rangle_{(I)} \right\}$

• signal addition will gain SNR by √2

Correlation $\int s_1(t)s_2(t)dt$

Redundancy : Statistical Advantage

If noises are complete gaussian, we can estimate the amount of fake events due to noises. However, ...

Reduce fake due to noise

- fake rate of each interferometers: R₁, R₂
- time window: ΔT

(<- arrival time resolution for GW events + T.O.F)

accidental coincidence rate:

 $\mathbf{R}_{acc} = \mathbf{R}_1 \ \mathbf{R}_2 \ \Delta \mathbf{T}$

example: LISM-TAMA <u>~10⁻⁴</u> LIGO-TAMA

reduction ~ $R \wedge T$

TAMA300	LISM
1,868,388	1,292,630
Results of coincidence analysis	
n_{obs}	$\bar{n}_{acc} \pm \bar{\sigma}_{acc}$
4706	$(4.2 \pm 0.5) \times 10^3$
804	$(7.1 \pm 0.8) \times 10^2$
761	$(6.7 \pm 0.8) \times 10^2$
Nobs	N_{bg}
0	0.063

This is a big advantage!

H.Takahashi et. al., PRD70, 042003

The correlation make possible to search the stochastic GW.

Sensitivity : h_f(100Hz) ~ 4.4 x 10⁻²⁴ [/rHz]

Single interferometer

• h₀² Ω_{gw}^{1d} (100Hz) ~ 3.8 x 10⁻⁵

Twin interferometers

- 1yr integration, freq. band: 100Hz
- h₀² Ω_{gw}^{2d} (100Hz) ~ 4.8 x 10⁻¹⁰

Noise cross talk & common components

- seismic motion
- electric coupling
- mechanical coupling

Solution 1 : Consistency in strain calibrated data

24

• The fake's amplitude is different. propotional to the coupling factor

Waveforms are similar in v(t), but different
 in h(t) or h(f)

Transfer functions are different. Thus, the behaivor in strain caliblated data is different

Solution 2 : Analysis can be insensitive to the noisy frequency band.

Coincidence of Fakes with Cross Talk Noise (Simulation)

Cases for:

- Whole frequency band
- Seismic component only

		Inspiral 1.4-1.4 Msol	Inspiral 10-10 Msol	BH ringdown (20Hz,Q2=0)
	all frequency band	30% -> x 10	30% -> x 10	30% -> x 10
cross talk model	seismic component only	no effect	no effect	no effect
	spike	proportional to cross talk	proportional to cross talk	proportional to cross talk

for Stochastic GW: 5% cross talk -> $h_0^2 \Omega_{gw}^{2d} \sim 10^{-8}$

Twin interferometers will drastically improve

- noise reduction (=range of search),
- utility of LCGT.
- Problem is 'cross talk of noises'.
- The problem can escape with
 - different tuning of IFO,
 - keep independency in observation band.