Derivation of upper limit on the photon fraction using the highest-energy AGASA cosmic rays

M. Rissea,b, P. Homolab, R. Engela, D. Górab, D. Hecka, J. Pękalab, B. Wilczyńskaa and H. Wilczyńskib

a Forschungszentrum Karlsruhe, Institut für Kernphysik, 76021 Karlsruhe, Germany
b Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland

Presenter: M. Risse (markus.risse@ik.fzk.de), ger-risse-M-abs1-he14-poster

A new method to derive an upper limit on photon primaries for small data sets of air showers is described which accounts for shower properties varying with the primary energy and arrival direction. Applying this method to the highest-energy AGASA data, an upper limit on the photon fraction of 51% (67%) at a confidence level of 90% (95%) for primary energies above 10^{20} eV is derived.

1. Introduction

Robust experimental limits on the cosmic-ray photon component might be a key to distinguish between theoretical source models for the highest-energy cosmic rays. In particular, some non-acceleration models, usually fitted to the AGASA data at the high-energy end of the spectrum, predict photon dominance above 10^{20} eV [1]. We compare the muon densities measured in AGASA events to simulations of air showers induced by photons, taking photon conversion in the geomagnetic field into account.

To statistically quantify the level of agreement between the primary photon fraction predicted by a model and the observed air shower data, a method is required that accounts for (i) event-by-event fluctuations in the considered shower observable (here: the muon density) for fixed primary parameters (ii) a possible change of average shower properties for the different events in the data sample (e.g. different photon conversion probabilities depending on the direction of the observed event) (iii) the limited event statistics (which is unavoidable at the high-energy end of the cosmic-ray spectrum).

We describe such a method that allows one to test the contribution of photon primaries or any other particle type to cosmic rays and to possibly set an upper limit on the primary fraction with well-defined confidence level. Since only a limit on the primary fraction is placed, this method does not rely on a knowledge of the absolute cosmic-ray flux. Moreover, no potential signal background from other primary particle types has to be considered, as only the rejection power to photons is quantified: Any photon-like contributions from other primaries would just weaken the rejection power to photons and increase the numerical value of the derived upper limit. As a consequence, this analysis of photon primaries is also less severely affected by uncertainties from hadronic interaction models usually present in cosmic-ray composition studies.

Applying the new method to AGASA data allows us to exclude photon dominance at highest cosmic-ray energies at 90% confidence level. Thus, it is difficult to obtain a consistent description of the AGASA high-energy data in certain non-acceleration models which, therefore, are disfavoured as the sole explanation for the highest-energy cosmic rays.

A detailed description of the new method and the analysis is given in [2]. In the following, we provide a brief summary with the focus put on the statistical method.
2. Data and simulation

AGASA [3] consisted of 111 array detectors spread over \(\approx 100 \text{ km}^2\) area and 27 muon detectors with an energy threshold of 0.5 GeV for vertically incident muons. The primary energy was determined from the array data with a statistical accuracy of \(\approx 25\%\) for hadron primaries [4]. Assuming photon primaries, the energies reconstructed this way were found to be underestimated by \(\approx 20\%\) for the most-energetic events [3]. Six events were reconstructed with \(> 100 \text{ EeV}\) which had more than one muon detector within 800-1600 m distance from the shower core [3]. The muon density \(\rho_j\) at 1000 m core distance was obtained for each event \(j = 1 \ldots 6\) with an uncertainty of \(40\%\) [3]. The shower parameters of these events are given in Tab. 1.

Electromagnetic cascading of photons in the geomagnetic field is simulated for the AGASA site with the new PRESHOWER code [5]. The atmospheric shower is simulated with CORSIKA 6.18 [6] as a superposition of subshowers initiated by the preshower particles or, if no preshower occurred, with the original primary photon. Electromagnetic interactions are treated by the EGS4 code [7], which was upgraded [6] to take photonuclear reactions as well as the Landau-Pomeranchuk-Migdal (LPM) effect [8] into account. For the photonuclear cross-section, the Particle Data Group extrapolation is chosen [9]. The influence when using different extrapolations is discussed in [2]. Hadronic interactions are simulated with QGSJET 01 [10].

3. Method and Results

In contrast to previous approaches, the information about individual event topologies is used in the new method. For each AGASA event, 100 primary photon showers are generated. The reconstructed primary parameters [4] are adopted as simulation input, taking for the primary energy the statistical experimental resolution and the systematic underestimation in case of photon primaries into account. The distribution \(\rho_j^s\) of simulated muon densities obtained from CORSIKA for each AGASA event is compared in Fig. 1 to the data. The average values \(\langle \rho_j^s \rangle\) and standard deviations \(\Delta \rho_j^s\) are listed in Tab. 1. The average muon densities for primary photons are a factor 2-7 below the data. Qualitatively, a photon origin of most of the observed events is disfavoured.

To assess the agreement of data and photon expectation, a \(\chi^2\) value is calculated for each event \(j\) as

\[
\chi^2_j = \frac{(\rho_j - \langle \rho_j^s \rangle)^2}{(\Delta \rho_j^s)^2 + (\Delta \rho_j)^2}
\]

with \(\Delta \rho_j\) being the measurement uncertainty, \(\Delta \rho_j = 0.4 \cdot \rho_j\) [3]. To account for possible deviations of the

<table>
<thead>
<tr>
<th>primary energy [EeV]</th>
<th>295</th>
<th>240</th>
<th>173</th>
<th>161</th>
<th>126</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenith angle [°]</td>
<td>37</td>
<td>23</td>
<td>14</td>
<td>35</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>azimuth angle [°]</td>
<td>260</td>
<td>236</td>
<td>211</td>
<td>55</td>
<td>108</td>
<td>279</td>
</tr>
<tr>
<td>(\rho_j) [m(^{-2})]</td>
<td>8.9</td>
<td>10.7</td>
<td>8.7</td>
<td>5.9</td>
<td>12.6</td>
<td>9.3</td>
</tr>
<tr>
<td>preshower occurrence [%]</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>100</td>
<td>93</td>
<td>100</td>
</tr>
<tr>
<td>(\langle \rho_j^s \rangle) [m(^{-2})]</td>
<td>4.3</td>
<td>3.1</td>
<td>2.1</td>
<td>2.3</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>(\Delta \rho_j^s) [m(^{-2})]</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(\chi^2_j)</td>
<td>1.6</td>
<td>3.0</td>
<td>3.4</td>
<td>2.2</td>
<td>4.6</td>
<td>4.0</td>
</tr>
<tr>
<td>(p_j) [%]</td>
<td>20.8</td>
<td>8.3</td>
<td>6.4</td>
<td>13.9</td>
<td>3.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Table 1. Reconstructed shower parameters of the AGASA events [3] (upper part of the Table) and simulation results (lower part). The energies are increased by 20% to account for the case of photon primaries [3]. The azimuth angle is given clockwise from north for the incoming direction.
the primary energy (see Tab. 1). The measured values are above the predictions from primary photon simulations.

Simulated muon densities from a Gaussian distribution, the probability $p_j(\chi^2 \geq \chi_j^2)$ of a photon-initiated shower to yield a value $\chi^2 \geq \chi_j^2$ is determined by a Monte Carlo technique: A simulated muon density value is taken at random from the distribution ρ_j^0, a random shift is performed according to the experimental resolution $\Delta \rho_j$, and a χ^2 value is calculated with Eq. (1), replacing ρ_j by the artificial muon density value. Repeating this many times then gives $p_j(\chi^2 \geq \chi_j^2)$.

The values χ_j^2 and p_j are listed for the six events in Tab. 1. The probabilities p_j range from 3% to 21%.

Correspondingly, the probability $p(\chi^2 \geq \sum_{j=1}^{6} \chi_j^2)$ of six photon-initiated events to yield a χ^2 value larger or equal to the measured one can be determined as $p = 0.5\%$. Thus, it is unlikely that all cosmic rays at these energies are photons (rejection with 99.5\% confidence). An upper limit on the photon fraction F_γ can be set.

It should be noted that, due to the small event statistics, the upper limit cannot be smaller than a certain value. Assuming a fraction F_γ of photons in the primary flux, a set of n_m primaries picked at random is expected to contain no primary photon with probability $(1 - F_\gamma)^{n_m}$. For $n_m = 6$, this probability is $\approx 5\%$ for $F_\gamma = 40\%$. Thus, in the present case only hypothetical photon fractions $F_\gamma \geq 40\%$ could in principle be tested at a confidence level $\alpha = 95\%$. In general, the relation between the minimum possible fraction F_γ^min that could be excluded for a given event number n_m (or in turn: the minimum event number n_m^min required to possibly exclude a certain fraction F_γ) is given by

$$F_\gamma^\text{min} = 1 - (1 - \alpha)^{1/n_m}, \quad n_m^\text{min} = \frac{\ln(1 - \alpha)}{\ln(1 - F_\gamma)}.$$ \hspace{1cm} (2)

with α being the confidence level of rejection. This theoretical limit is reached only if for each event j, the observations allowed us to exclude a photon origin ($p_j \to 0$). Some numerical examples are listed in Tab. 2.

Table 2. Numerical examples for minimum fraction $F_\gamma^\text{min}(n_m)$ that could be excluded with n_m events (or: minimum number of events $n_m^\text{min}(F_\gamma)$ required to exclude fraction F_γ) for a confidence level $\alpha = 95\%$.

<table>
<thead>
<tr>
<th>E_γ (EeV)</th>
<th>F_γ^min (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ev</td>
<td>39.3%</td>
</tr>
<tr>
<td>10 ev</td>
<td>25.9%</td>
</tr>
<tr>
<td>30 ev</td>
<td>9.5%</td>
</tr>
<tr>
<td>100 ev</td>
<td>3.0%</td>
</tr>
<tr>
<td>300 ev</td>
<td>1.0%</td>
</tr>
<tr>
<td>1000 ev</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

For deriving an upper limit $F_\gamma^{ul} < 100\%$, scenarios have to be tested in which $n_\gamma = 0 \ldots n_m$ showers out of n_m...
events might be initiated by photons. For a hypothetical photon fraction F_γ, the probability q that a set of n_m events contains n_γ photons is $q(F_\gamma, n_\gamma, n_m) = F_\gamma^{n_\gamma} (1 - F_\gamma)^{n_m - n_\gamma}$. This probability is multiplied by the probabilities $p_\gamma(n_\gamma) \cdot p_r(n_m - n_\gamma)$, with $p_\gamma(n_\gamma)$ being the probability that the n_γ most photon-like looking events are generated by photons, and $p_r(n_m - n_\gamma)$ being the probability that the remaining $n_m - n_\gamma$ events are due to non-photon primaries. $p_\gamma(n_\gamma)$ is determined by the MC technique as the probability to obtain values $\chi^2 \geq \sum_{i=1}^{n_\gamma} \chi^2_{k_i}$, with $p_\gamma(0) = 1$ and with $\chi^2_{k_i} = \chi^2_{k_{i+1}}$ from Tab. 1, where index k_i refers to the event with smallest value $\chi^2_{k_i}$ and $\chi^2_{k_i} \leq \chi^2_{k_{i+1}}$. To derive an upper limit on photons, the probabilities $p_r(n_m - n_\gamma)$ are set to unity. Summing over all possibilities $n_\gamma = 0 \ldots n_m$ then gives the probability $P(F_\gamma)$ to obtain χ^2 values at least as large as found in the data set,

$$P(F_\gamma) = \sum_{n_\gamma = 0}^{n_m} q(F_\gamma, n_\gamma, n_m) \cdot p_\gamma(n_\gamma) \cdot p_r(n_m - n_\gamma).$$

This probability depends on the assumed photon fraction F_γ. For the considered AGASA data set one obtains $P(F_\gamma = 51\%) = 10\%$ and $P(F_\gamma = 67\%) = 5\%$. Therefore, the upper limit on the primary photon fraction is $F_{\gamma}^{ul} = 51\%$ (67\%) at 90\% (95\%) CL. The derived bound is the first limit on the photon contribution above the GZK cutoff energy. The limit refers to the photon fraction integrated above the primary photon energy that corresponds to the lowest-energy event in the data sample, which in the present analysis is 125 EeV.

In Fig. 2, upper limits derived previously at lower energy and the current bound are compared to some predictions based on non-acceleration models. Models predicting photon dominance at highest energies are disfavoured by the presented upper limit.

The new method can easily be applied also to data from other air shower experiments, see e.g. [14].

Acknowledgments. We are grateful to K. Shinozaki for helpful discussions about the AGASA data. This work was partially supported by the Polish State Committee for Scientific Research under grants No. PBZ KBN 054/P03/2001 and 2P03B 11024 and in Germany by the DAAD under grant No. PPP 323.

References