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Abstract

The acceleration of energetic charged particles at relativistic and non-

relativistic shock waves plays an important role in powering esztablished and

potential cosmic TeV-gamma-ray sources as supernova remnants, jets of active

galactic nuclei and gamma-ray bursts. We therefore review some recent results

on non-relativistic shock acceleretion and describe the current standing of the the-

ory for relativistic shock acceleration. From the experience with non-relativistic

shocks we emphasize that the microphysics of the interaction of plasma wave tur-

bulence with the shock wave is important not only for the resulting momentum

spectrum of accelerated particles but also for the shock wave structure itself.

1. Introduction

Three types of explosive astrophysical events are of interest to air Cheren-

kov telescopes: supernova remnants (SNRs), gamma-ray bursts (GRBs) and jets

of active galactic nuclei (AGNi). Supernova remnants result from the massive

explosions of stars at the end of their life, and are usually modelled as spherical

outflows with large but non-relativistic outflow velocity V0 << c. The leading

collapsar (Woosley 1993, Paczynski 1998) and supranova (Vietri and Stella 1998)

models for gamma-ray bursts involve a relativistic outflow that emanates from

a compact source, where due to strong stellar envelope magnetic fields and/or

explosions in a pre-existing pulsar wind bubble anisotropic relativistic outflow

velocities result with initial Lorentz factors Γ0 = (1 − (V0/c)
2)−1/2 � 300. AGN

jets can be regarded as channelled collimated relativistic outflow components

(Γ0 � 30) propagating in the dynamic jet medium which might be identical to

the ambient interstellar medium (e. g. Pohl and Schlickeiser 2000). In all three

sources it is of interest to unravel the basic physical processes that convert the

huge kinetic outflow energy into observable nonthermal radiation.

According to current understanding there are two relevant dissipation pro-

cesses of outflows in their interaction with the ambient cosmic plasmas:
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(1) two-stream plasma instabilities of the dense outflow plasma in the dilute

interstellar medium,

(2) the formation of magnetized relativistic and non-relativistic shock waves in

the dilute interstellar medium environment.

Because the surrounding interstellar medium from a plasma physics point

of view is extremely collision-pure, a magnetohydrodynamic description of the

interaction and the forming shock waves is not appropriate at all spatial scales

of interest, so that both dissipation processes have to be investigated using a full

plasma kinetic theory.

Both dissipation processes lead to efficient acceleration of energetic charged

particles that then produce the observable nonthermal radiation. As a conse-

quence of the two-stream plasma instability, electrostatic and magnetohydrody-

namic plasma turbulence is generated that then accelerates charged particles by

resonant wave-particle interactions. If indeed magnetized shock waves form, ener-

getic particles can be accelerated by the diffusive shock wave acceleration mech-

anism. In the following I review some recent results on non-relativistic shock

acceleretion and describe the theoretical difficulties occuring for relativistic shock

acceleration.

2. Standard model of particle acceleration in outflow sources

In most existing radiation models of GRBs and AGN jets, it is assumed

that adiabatic shock waves form from the interaction of the outflow with the

surrounding interstellar medium, whose properties are determined by the mag-

netohydrodynamic shock relations, including sometimes nonlinear effects due to

the back reaction of the accelerated particles. Energetic charged particles are

efficiently accelerated by the diffusive shock wave acceleration mechanism, pro-

viding power law distribution functions in particle rigidity for relativistic hadrons

and pairs. By simple equipartition arguments, it is assumed that a considerable

fraction of the outflow energy is transformed into these power law distributions

of energetic particles. Time-dependent modelling of the nonthermal synchrotron,

synchrotron-self-Compton and external Compton cooling of energetic pairs in the

evolving outflow source region are then performed to explain multiwavelength

spectra and light curves in the optically thin case. Analogous calculations in

an optically thick environment very often start from energetic hadrons that via

cascades involving inelastic hadron-hadron-interactions and/or photomeson inter-

actions provide copious amounts of secondary pairs.

Simple leptonic cooling models are remarkably successful in explaining the

observed multiwavelength spectra of AGN jets (see Dermer and Schlickeiser 2002
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and references therein) and GRB afterglows (e.g. Dermer, Böttcher and Chiang

2000); however, the measured rapid variability in the TeV light curves from Mrk

501 and Mrk 421 remains a challenge for these types of models. Especially, the

long-time TeV monitoring of Mrk 501 (Gaidos et al. 1996; Quinn et al. 1999;

Aharonian et al. 1999, 2001) indicates that during active phases (of order several

months) many individual short time (of order days) intense TeV-flares occur.

Within simple one-zone pair cooling models this implies that for every indivudual

flare a new emission component has to be ejected from the central source that cools

down with associated high-frequency TeV emission first, and delayed emission

at sub-TeV frequencies. Within the shock acceleration and the hadron cascade

scenarios it is unclear which processes provide the rapid short-term variability.

Another drawback of the standard model is that the diffusive acceleration

mechanism even in the test particle limit is not fully understood both at non-

relativistic and at relativistic shock speeds. For relativistic shocks the inferred

universal particle’s power law spectral index value s = 2.23 ± 0.01 (Heavens and

Drury 1988, Bednarz and Ostrowski 1998, Kirk et al. 2000) differs from what is

needed for radiation modelling. Open issues for non-relativistic shock accelera-

tion are the question of generating flat (s < 2) particle spectral indices and the

resulting electron-proton ratio. As we shall argue, these discrepancies may have

their origin in the non-kinetic treatment of the magnetized shock wave proper-

ties in these cosmic collision-pure environments. In any case, it is appropriate to

inspect the microphysics of shock wave acceleration more closely.

3. Test-particle acceleration in relativistic and non-relativistic flows

Existing analytical work on the acceleration of test particles in relativistic

and non-relativistic flows is based on two particle transport equations: the Fokker-

Planck equation (1) in case of relativistic flows, and the diffusion-convection equa-

tion (3) in case of non-relativistic flows. Both have their origin in the quasilinear

description of plasma kinetics. Due to the high conductivity of most cosmic plas-

mas large-scale steady electric fields are absent, so that the interest concentrates

on magnetized plasma. The quasilinear approach to the interaction of charged

particles with partially random electromagnetic fields ( �B0 + δ �B, δ �E) is a first-

order perturbation calculation in the ratio qL = (δB/B0)
2 and requires smallness

of this ratio with respect to unity. In most cosmic plasmas this requirement is

well satisfied as has been established by direct in-situ measurements in interplan-

etary plasmas, or due to saturation effects in the growth of fluctuating fields. The

standard quasilinear approach also requires incoherent mode coupling of the fluc-

tuating electromagnetic fields described as the superposition of individual plasma
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wave modes.

The stationary Fokker–Planck equation for the gyrotropic particle phase

space density f(z, p, µ), where z denotes the spatial variable along the ordered

uniform magnetic field �B0 = B0ez and µ = p‖/p, is formulated in the mixed

comoving frame (i.e. p, µ are measured in the fluid frame while z is measured in

the lab frame). The Fokker–Planck equation reads (Kirk et al. 1988)

Γ(U +vµ)
[∂f

∂z
− ∂U

∂z
Γ2(m2c4+p2c2)1/2(µ

∂f

∂p
+

1 − µ2

p

∂f

∂µ
)
]

= S(z, p, ν)+E(f) (1)

where S(z, p, µ) denotes the source term, v the particle velocity, U the flow velocity

and Γ = (1 − U2

c2
)−1/2.

E(f) =
∂

∂µ

[
Dµµ

∂f

∂µ
+ Dµp

∂f

∂p

]
+

1

p2

∂

∂p

(
p2[Dµp

∂f

∂µ
+ Dpp

∂f

∂p
]
)

(2)

is the Fokker-Planck wave-particle interaction term where the three Fokker–

Planck coefficients Dµµ,Dµp,Dpp depend on the nature and statistical properties

of the plasma wave turbulence.

Linear stability calculations show that magnetized plasmas contain low-

frequency magnetohydrodynamic turbulence such as shear Alfven waves and fast

and slow magnetosonic waves. Because for these plasma waves the magnetic part

of the Lorentz force is much larger than the electric part of the Lorentz force, the

time scale for rapid pitch angle scattering of energetic charged particles is much

shorter than the time scale for energy changes. As a consequence, the cosmic ray

particles’ gyrotropic distribution function adjusts rapidly to quasi-equilibrium,

which is close to the isotropic distribution function, in the fluid frame. By the

standard diffusion approximation the diffusion–convection transport equation for

the isotropic part of the phase space density F (z, p) can then be derived from the

quasilinear Fokker–Planck equation (1). For non-relativistic bulk speeds U << c

the diffusion-convection equation reads (Kirk et al. 1988)

− S0 =
∂

∂z

[
κ
∂F

∂z

]
− V

∂F

∂z
+

p

3

∂V

∂z

∂F

∂p
+

1

p2

∂

∂p

[
p2A

∂F

∂p
F

]
, (3)

where the spatial diffusion coefficient κ, the cosmic ray bulk speed V and the

momentum diffusion coefficient A are determined by pitch-angle averages of three

Fokker–Planck coefficients

κ =
v2

8

∫ 1

−1
dµ

(1 − µ2)2

Dµµ(µ)
,

V = U +
1

3p2

∂

∂p
(p3D), D =

3v

4p

∫ 1

−1
dµ(1 − µ2)

Dµp(µ)

Dµµ(µ)
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A =
1

2

∫ 1

−1
dµ[Dpp(µ) − D2

µp(µ)

Dµµ(µ)
]. (4)

The three Fokker–Planck coefficients entering the averaging in equations (4) are

calculated (Hall and Sturrock 1967, Krommes 1984, Achatz et al. 1991) from

ensemble-averaged first-order corrections to the particle orbit,

Dµµ = �
∫ ∞

0
dτ 〈µ̇(t)µ̇∗(t + τ )〉 , Dµp = �

∫ ∞

0
dτ 〈µ̇(t)ṗ∗(t + τ )〉 ,

Dpp = �
∫ ∞

0
dτ 〈ṗ(t)ṗ∗(t + τ )〉 , (5)

with �p = (p
√

1 − µ2 cosφ, p
√

1 − µ2 sinφ, pµ).

In its general form the diffusion–convection transport equation contains

spatial diffusion and spatial convection terms as well as momentum diffusion and

momentum convection terms. Since the pioneering work of Fermi (1949, 1954)

it has become customary to refer to the latter two as Fermi acceleration of sec-

ond and first order, respectively. Note, however, that the momentum convection

term only leads to acceleration for converging bulk flow (i.e., dV/dz < 0) but

to deceleration for expanding flows (i.e., dV/dz > 0). The converging bulk flow

condition dV/dz < 0 is fulfilled at cosmic shock waves and leads to diffusive shock

acceleration. We also note that in general the cosmic ray bulk speed V differs

from the gas speed U by an extra term that depends on the cross helicity (i.e.

the relative intensities of forward and backward moving waves) in the fluid rest

frame.

The values of the three quasilinear transport parameters (4) depend on

the nature and the statistical properties of the electromagnetic turbulence and

the turbulence-carrying background medium. Idealized physical situations can be

constructed where some of the three transport parameters (4) do not occur, e.g., in

the magnetostatic approximation of the turbulence the parameters A = D = 0,

so that the transport equation (3) in particular would contain no momentum

diffusion term. Despite its frequent use, such a truncated transport equation is

unrealistic and its applicability therefore rather limited.

Most cosmic plasmas have a small value of the plasma beta β = c2
S/V 2

A ,

whose square root defined by the ratio of the ion sound to Alfven speed, and thus

indicates the ratio of thermal to magnetic pressure. For low-beta plasmas the two

relevant magnetohydrodynamic wave modes are the

(1) shear Alfven waves with dispersion relation

ω2
R = V 2

Ak2
‖ (6)

at parallel wavenumbers |k‖| � Ωp/VA, where Ωp denotes the non-relativistic

proton gyrofrequency, and
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(2) the fast magnetosonic waves or fast mode waves with dispersion relation

ω2
R = V 2

Ak2, k2 = k2
‖ + k2

⊥ (7)

for wavenumbers |k| � Ωp/VA.

In the limiting case (commonly referred to as slab model) of parallel (to �B0)

propagation (θ = k⊥ = 0) the shear Alfven waves become the left-handed circu-

larly polarised Alfven-ion-cyclotron waves, whereas the fast magnetosonic waves

become the right-handed circularly polarised Alfven-Whistler-electron-cyclotron

waves.

4. Diffusive acceleration at relativistic shocks

Since the pioneering work of Kirk and Schneider (1997) solutions of the

Fokker-Planck equation (1) are derived for a Fokker-Planck interaction term

E(f) � ∂

∂µ

[
Dµµ

∂f

∂µ

]
(8)

in a step function shock profile

U =

{
U+ in z > 0

U− in z < 0
(9)

so that ∂U/∂z = 0 ∀z 	= 0. The simplified Fokker-Planck operator (8) is appro-

priate for the low-frequency MHD modes (6) and (7) for which Dµp and Dpp are

of order (VA/v) << 1 and (VA/v)2 << 1, respectively, smaller than Dµµ. The

steady-state Fokker-Planck transport equation (1) then reduces to

Γ±(U± + vµ)
∂f±
∂µ

=
∂

∂µ

[
D±

µµ

∂f±
∂µ

]
(10)

on both sides of shock. Adopting shock properties (relation between U+ and U−)

from relativistic MHD shock equations the solutions of Eq. (10) are obtained (for

a recent review see Kirk and Duffy 1999) by expanding the solutions in terms

of the eigenfunctions of the Sturm-Liouville-type pitch-angle scattering operator,

and matching the solutions at z = 0, i.e. f+(z = 0, p, µ) = f−(z = 0, p, µ).

Of course, the derived solutions depend strongly on the adopted form of

the pitch angle Fokker-Planck coefficient D±
µµ that contains all the microphysics

of the particle-wave interaction. All existing analysis assume the same Fokker-

Planck coefficient

D+
µµ = D−

µµ = Dµµ(µ, p) (11)
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on both sides of the shock, chosing a simple separable form

Dµµ(µ, p) = D1(p)D2(µ).

According to our experience from non-relativistic shock acceleration, where the

interaction of Alfven waves with the shock wave has been studied in greater detail,

assumption (11) is very problematic and most probably not applicable.

5. Diffusive acceleration at nonrelativistic shocks

The transport equation (3) is used to investigate the test-particle diffusive

acceleration of cosmic ray particles in quasi-parallel shock waves. Here finite

plasma wave speed effects are important: this concerns in particular the cosmic

ray bulk speed V in Eq. (4) that can be different from the gas speed U for nonzero

values of D 	= 0.

Following earlier work by McKenzie and Westphal (1969) and Scholer and

Belcher (1971), Vainio and Schlickeiser (1998, 1999, 2001) calculated anew the

transmission of small-amplitude parallel-moving Alfven waves through a parallel

super-Alfvenic shock. In their investigation Vainio and Schlickeiser combined the

equations for

(1) the continuity of the transverse momentum
ρUn

�Ut − Bn
�Bt

4π


 = 0, (12)

where the shock bracket [X] ≡ X1 − X2 denotes the difference of the upstream

(index 1) and downstream (index 2) value of the physical quantity X, Un (Bn) and
�Ut ( �Bt) are the normal (to the shock) and tangential gas flow velocity (magnetic

field) components, respectively;

(2) the continuity of the normal magnetic field

Bn,1 = Bn,2 = B0; (13)

(3) the continuity of the tangential electric field[
Un

�Bt − Bn
�Ut

]
= 0; (14)

(4) and the continuity of the mass flux[
ρUn

]
= 0 (15)

with the different relation of velocity and magnetic field fluctuations for forward

(f) and backward (b) moving Alfven waves, i. e.

δ�U f = − δ �Bf

(4πρ)1/2
, δ �Ub =

δ �Bb

(4πρ)1/2
. (16)
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To arrive at a complete set of equations for the downstream values, i.e.,

to be able to determine the gas compression ratio r = ρ2/ρ1 = Un,1/Un,2 of the

shock, Eqs. (12) – (16) must be completed by yet two equations (e.g., Boyd and

Sanderson 1969) describing the continuity of the normal momentum

[
ρU2

n + P +
B2

t

8π

]
= 0 (17)

and energy flux (for an adiabatic equation of state, Pρ−γg = const.)


1

2
ρUn(U2

n + U2
t ) +

γgPUn

γg − 1
+

UnB2
t

4π
− Bn(�Ut · �Bt)

4π


 = 0, (18)

respectively.

One then arrives (Vainio and Schlickeiser 1999) at a cubic equation for

the shock compression r that includes the influence of finite Alfven wave pressure

and that can be solved in a parametric form. For γg = 5/3 THe Alfvenic Mach

number M = Un,1/VA,1 obeys

M2 = (1 + y)r(y) (19)

r(y) =
8y2(y + 1) − 6βy2 − qL,1(y + 1)(5y − 3)

2y2(y + 1) + qL,1(y + 1)(y + 3)
, (20)

where qL,1 = (δB1/B0)
2, and the parameter y runs between

β − 1 + qL,1 +
√

(β + 1 + qL,1)2 − 4β

2
< y < ∞. (21)

Moreover, with this approach the downstream electromagnetic field proper-

ties can be calculated from the specified upstream electromagnetic field. In partic-

ular, specifying the upstream Alfven wave cross helicity state Hc,1, that indicates

the relative fraction of forward and backward moving Alfven waves, so that the

upstream cosmic ray bulk speed is V1 = U1 + Hc,1VA,1, Vainio and Schlickeiser

calculated the resulting downstream cosmic ray bulk speed V2 = U2 + Hc,2VA,2.

This immediately yields the scattering center compression ratio

rk ≡ V1

V2
= r

M + Hc,1

M + r1/2Hc,2
, (22)

which in general is different from the gas compression ratio r. Because the shock

wave is collisionless, it is this scattering center compression ratio, and not the gas

compression ratio, that determines the spectral index of the power law momentum

spectrum of the accelerated cosmic ray particles. When downstream momentum
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Fig. 1. Cosmic-ray spectral index produced by an adiabatic shock with a constant
upstream plasma beta, neglecting stochastic acceleration in the downstream region.
Dashed and solid lines give the results for Hc,1 = +1 and −1, respectively. The
magnetic amplitude of the upstream waves is b = 0.1 and their spectral index is
q = 1.5. The Alfven wave normal momentum and energy flux are includeded in
deriving the shock’s gas compression ratio. From Vainio and Schlickeiser (1999).

diffusion is neglected, the particle differential energy spectrum at the shock is

— up to a cut off determined by losses, particle escape, finite geometrical shock

extent and/or finite acceleration time — a power law in momentum

dJ/dE ∝ p−Γ, Γ =
rk + 2

rk − 1
, (23)

whose spectral index Γ is solely determined by rk. In Fig. 1 we show the calcu-

lated cosmic ray spectral index values as a function of the spectral index of the

conventional theory, Γgas = (r+2)/(r−1) and as a function of the gas compression

ratio for four different specified upstream states and an adiabatic index γg = 5/3.

In all cases, the scattering center compression ratio rk differs significantly

from the gas compression ratio r. Practically never does the scattering center

compression ratio rK agree with the gas compression ratio r. In particular, for
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low upstream plasma beta small spectral index values Γ ≤ 2 are possible, whereas

the gas compression ratio value is limited to r ≤ 4 for M → ∞. Thus, the

model, being able to generate particle power law spectra harder than the originally

limiting value Γ = 2, avoids the discrepancy noted by, e.g., Lerche (1980), Drury

(1983) and Dröge et al. (1987) that the original shock wave acceleration theory

in its simplest test-particle form is not in accord with the observed flat particle

spectra in shell-type supernova remnants and bright spiral galaxies. And it again

is keeping track of different propagation speeds of forward and backward moving

waves that leads to this significant result.

The principal difference between the gas compression ratio and the scat-

tering center compression ratio, being equivalent to the difference between the

effective plasma wave velocity and the gas velocity, and the possible consequences

for the spectral index of the differential momentum spectrum of accelerated par-

ticles, has been already noted by Bell (1978), see his Eqs. (11) and (12); although

he did no quantitative calculations of this effect. By calculating the correct trans-

mission coefficients of Alfven waves through the shock from the Rankine-Hugoniot

continuity equations Vainio and Schlickeiser (1988, 1999) demonstrated that pre-

cisely this effect can account for the generation of particle spectral indices flatter

than Γ = 2.

6. Summary and conclusions

The acceleration of energetic charged particles at relativistic and non-

relativistic shock waves plays an important role in powering established and

potential cosmic TeV-gamma-ray sources as supernova remnants, jets of active

galactic nuclei and gamma-ray bursts. I have reviewed some recent results on

non-relativistic shock acceleretion and described the current standing of the the-

ory for relativistic shock acceleration.

There are three important clues from our insight into non-relativistic shock

acceleration:

1) The microphysics of the plasma wave - shock interaction is important not only

for the resulting momentum spectrum of accelerated particles (difference between

gas compression ratio and scattering center compression ratio) but also for the

shock wave structure (influence of finite wave pressure on the shock’s cubic (20)).

2) Cosmic ray transport parameters Dµµ,Dµp,Dpp for the Fokker-Planck equa-

tion and κ,V,A for the diffusion-convection equation have to be calculated self-

consistently from the shock properties including in particular the interaction of

plasma waves (transmission and reflection) with the shock. As a consequence, the

transport parameters are significantly different downstream from upstream! This



11

finding should have consequences also for the assumptions made in relativistic

shock acceleration theories.

3) The dynamics of plasma waves near shocks is crucial for particle acceleration.

Especially the interaction of plasma waves with the shock wave change the cosmic

transport parameters significantly from upstream to downstream. As an alterna-

tive it might be useful to study simplified models of plasma wave dynamics at

the interface of outflows and interstellar medium, ignoring in the beginning the

complications arising from the possible existence of a gaseous shock. One such

model is the relativistic pick-up model of Pohl and Schlickeiser (2000).

All three finding should have corresponding consequences also for study-

ing particle acceleration in relativistic shocks and may guide further analytical

developments of relativistic shock acceleration theories.
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