

Name	,		Nasjimum Observed Flux (K = 300 MeV) (N ⁻¹ cm ⁻¹ t ⁻¹)	Spectral Index F		,	Openally Violent Variable	Optical Polarization >2%	NL Lai	Taper Lamitud Motion	Radio	Radio Flat Spectrum	Raturano
1090+14014C +10301 1090-512 10514-24114C 26.01 1025+1544000+150 1025-0144000+150	(193 2% # 1#47 1%71 1%71	- 8008 - 91.79 - 28.83 - 39.11 - 10.14	0.36 1.1 0.86 082 049	24±02 17+01 24±03 20±02 10±02	100 130 6M 640	21 9,3 1,2 9,7				;	ł	1	15 15
8985+112 8051-465 8052+144 8057-441 8155+114	187.40 151.97 191.37 250.00 141.90	- 28.78 - 36.61 - 11.01 - 11.09 + 26.02	1.04 0.29 1.6 0.33 0.39	13 ± 0.5 19 ± 0.4 24 ± 0.1 10 ± 0.5 20 ± 0.2	1.317 0.06 2.05 0.094	18 0.5 16 0.5	:	:	:	,	i	1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
804+80 907+343 805+71046C +7100, 804+40 1101 + 344 (Me4.401)	104:06 200-02 143:54 145:55 174:03	+ 30.46 + 31.81 + 36.43 + 40.13 + 40.03	0:29 0:21 0:34 0:21 0:34	25 ± 0.2 22 ± 04 24 ± 02 17 ± 02 17 ± 03	140 2,040 3,17 6,360 6,601	1.1 1.6 1.5 0.06 0.0000	:	:	:	ţ	ł	1	1
1150+283+9C + 29455 (2914-383-9294-243) (1222+134-9C 21.35) (256-4623-3C 279) (253-683-3C 279)	198-4 301.54 201.07 308-08 308-08 308-08	+ 78.37 + 85.39 + 81.60 + 86.56 + 57.06	643 6,17 6,17 6,21 1,7	18 ± 04 14 ± 04 24 ± 02 34 ± 03 18 ± 1 ± 01	6.128 6.162 6.425 6.158 6.158	044 0004 0006 1.2	:	:	·	:	1		14 # 18.10
13(3113 1406016	308.00 331.20 331.20 23.00 33.25	+ 2554 + 5025 + 4014 + 4029 + 4629	1.3 841 823 823 823		121 1490 1391 120 148	0.3 1.7 048 1.4 1.2	;				ł	1	10 10
442 - 213 443 4 342 (4C + 5641). 179 + 22 (4C + 51.75). 191 - 68 201 - 677	12134 4149 355 2149 3149	+1633 +4034 +3035 +1035 +1035 -3438	647 18 636 630	18±01 19±01 18±02 34±04 13±02	1.8 1.31 1.854	4.3 1.3 0.6	·			·	1	1	1
2042 - 474 2230 + 114 (CEA 1825 2241 + 138 (SC 476.7)	343,50 77,40 10,11	-4038 -3439 -3439	6.28 8.46 1.33	$\frac{14 \pm 04}{18 \pm 02}$ $\frac{13 \pm 02}{13 \pm 01}$	1.489 1.807 1.809	1.1 0.4 0.9		:		:	÷	5	20 11 13
Auto 10 AGN							13-14 39-425	18	ů.	T-11 21-38%	13-33 97-100%	30-30 83-180%	

Theoretical Considerations [Complications] IV. Is the observed high energy cutoff in some objects intrinsic or simply due to photon-photon pair production (inside source or intergalactic)? Depends on ambient radiation field, but for 3C279 γ -sphere: $r_{\text{emission}} \leq 100 R_{e} \ (\Box \ 10^{15} \text{ cm}), \ \tau_{\gamma\gamma} > 1 \text{ for } E \geq 10 \text{ MeV}$ $r_{emission} \leq 10^{17} \text{ cm} (\text{BLR}), \tau_{\gamma\gamma} > 1 \text{ for } E \geq 50 \text{ GeV}$ $r_{emission} \leq parsecs$ (dust torus), $\tau_{\gamma\gamma} > 1$ for $E \geq 1$ TeV [N.B. Estimates don't apply to Mrk 421/501 -- BL Lacs appear to have weak central radiation fields. Accretion disk underluminous for black hole mass] What is the origin of the spectral breaks seen in X-rays/gamma-rays? Superposition of different emission components? (next slide) Transition from efficient to "inefficient" cooling (particles escape before cooling)? (in SSC model, break/position position varies with source luminosity) Large effective value of E_min from acceleration process? (in SSC model, break not vary with luminosity unless acceleration mechanism changes)

Figure 4. Same as in Fig. 3. but with flaring activity through three dependent $Q_0(t)$ and $f_{max}(t)$ with $\gamma_{max} \propto Q_0$. The upper panel shows here $Q_0(t)$. The model parameters are: $k_1 = 45$, R = 3.2×10^{10} cm, B = 0.005 G, $t_{max} = 3$ Re^{-1} , $\gamma_{min} = 10^3$, $\xi =$ 0.5, $\eta = 0.1$.

Figure 4. Pet of a SPU model with two emission components (i) a quasi-stationary X-ray component (ii) a (i) a time writhle X-ray/TeV Gamma-ray component, flores produced through $Q_0(t)$. Data and units we the same as in Fig. 7. The model parameters are $h_1 = 4.8$, $B = 3.4 \times 10^{19}$ cm, B = 0.014 G, $h_{\rm m} = 3.8 \, {\rm e}^{-1}$, $\gamma_{\rm mid} = 2.3 \times 10^{19}$, $\gamma_{\rm max} = 0.4$, $\eta_{\rm m} = 0.4$

16 Krawczynski, Coppi & Abaronian

Table 1.	Selected I	Dates	1004	Monthlate 1	sheward to	 Chief the state
						contract property

Aribos		Objects	fraction	Titte Depender	SED Peak De 47	rtermined B	y P	lare Me	ochani	iem.		
inote & Takabara (Redaszek & Protie	1996) nue (1997)	9C 279, 364 421	56-k 421 56-k 581	Na Na	Cooling vs. P Nati specified	article Esca	po N	lot spor	thei diei			
1999) Nätcher et al. (1993	71	30-5-471		Ne	Sec.							
Mantiplyindia & Kirk	(1987)	58-6 431		Nm	Cooling yr. P	writele Ease	. G					
Plan et al. (1997)	0.000	384, 581		Ne	Sec.							
Dermer of al. (1988)		generic		You	Cooling vs. and Plasman	Particle Es Doculoratio	cape Á	1				
Chiakovgy & Chiavil	liwi (1999)	generale		Nm.	Cauling vs. P	writele Rees	per Q	24				
Coppi & Abaverian	[1908]	preservice		Yes	Cooling vs. P	uticle Rece	po Q	h. B.				
Kirk & Mastichiada	1.995	poteric		Ym	Cooling vs. P	'article Esca	po Q	74				
Saturdas et al. (2000	8	P8/8 218	8-304	Sec	Cooling vs. P	writele Esce	pe 7	interest of the second				
Petry et al. [2000]		384,581		Se	Ceoling vs. Scale	Injection 1	line p					
Ensurance et al. (200	(0)	provide		Nm .	Cooling vs. P	writele Esce	pe - 1	0A	rengi	Anna int	of fam)	
Deepenhiseri al. (200	21)	38-6-240		Na	Nat specified		0	Sunge	d Th			
Krawczynski et al. (2001)	34 k 421		You	Cooling vs. P	haticle Rece	po y	TRAME I				
Shara et al. (2001)		BC 279, 676	PK5-1406-	Yes	Cooling vs. Roale at Tinia	Injection 1	See 9	2a				
Elte et al. (2902)		1016-421 PRS 210	Mik 901, 8-304	Se	Ceoling vs. P	write Esos	po N	iot apos	fiel			
This work		58-h 381		Yes	Caoling va. of Sata	Porticle Es	ospe G	li: 7ma				
Ibiale 2. Parameter Eine Dependent Parameter	n el Madda Cennoti	Shown in A	Figures R (cm)	Rgga (#/1	\tilde{a}_{int} $[Re^{-1}]$	Tain	Yman		í	ę	n./vp	$\begin{bmatrix} L_k \\ [enge^{-L}] \end{bmatrix}$
2-00	1-mapon	est 4	5 1.1×10 ⁴⁰	-1.95	30	3080	2.5×10	ρ	8.5	0.2	660	1.2×10^{44}
Press 10	1-cempon	ont 4	5 1.5×10 ²⁴	-2.05	3	3080	1.6-35×	<10 ¹¹	0.5	0.2	1300	1.7×10^{10}
$T_{max}[4] \propto Q_0[6]^2$	L-composi	eni 6	3.2×10 ¹⁵	-1.43	3	3080	1443	×30 ⁴	8.5	0.3	880	8.3:10 ¹⁰
Qu10	2 million	rei d	5 3.4×10 ¹⁵	1.85	2	2080	2.3×10	e	8.5	0.4	TITE	1.3×10 ⁸⁸
	2-cempon	ost, 4	5 4.5×10 ¹³	0.05	10000	1.8×10^{6}	1.4×10	ρ	8.5	0.80	290	5.6×10 ⁴⁰
Q#10	Might Testin											

Using Mrk 501 April 1997 data can start to constrain DEBRA models – if SSC hypothesis is correct.

Key which allows this is simultaneous, broadband X-ray and TeV data.

Better data on the way!

Table 1. Joint RXTE-HEGRA Fits for Various DEBRA Models

Assumed DEDIRA	χ^2/dof	Chance Probability	$\delta_R^{\min}/\delta_R^{\min}$	$R_{S_{\min}}$	$R^{13}_{\delta_{\min}}$	$({\rm model-data})/\sigma_{\rm data}$
High, no shift	76/20	1.7×10^{-8}	25/86	0.0124	1.57	-2.5, -1.8, -3.2, -2.8, -2.9
High, shift	47/20	5.2×10^{-4}	21/48	0.015	3.56	-0.49, -3.0, -1.6, -1.7, -2.5
Kennicutt, no shift	58/20	1.4×10^{-5}	37/220	0.0089	0.54	-2.2, -4.3, -2.5, -2.3, -2.6
Kennicutt, shift	30/20	0.009	26/78	0.0025	2.3	-1.0, -3.1, -1.3, -1.3, -2.2
Salpeter, no shift	33/20	0.035	25/75	0.0025	2.5	-1.1, -3.2, -1.4, -1.3, -2.1
Salpotor, shift	21/20	0.41	24/47	0.015	5.9	0.20,-1.9,0.02,-0.04,-1.3
TT02, no shift	12/20	0.91	19/22	0.019	17	0.70, -0.96, 1.4, 1.5, -0.026
TT02, shift	18/20	0.60	16/13	0.028	20	0.79, -0.74, 1.8, 2.2, 0.70
No Background	39/20	6.8×10^{-3}	9.0/2.8	0.16	12	0.75,-0.50,2.4,3.2,2.0

Table 2. Joint BeppoBAX-CAT (April 16, 1997) Fits for Various DEBRA Models

Assumed DEBRA	χ^2/dof	Chance Probability	$\delta_R^{\rm min}/\delta_R^{\rm min}$	$B_{S_{min}}$	$R_{\ell_{min}}^{15}$
High, no shift	43/5	3.3×10^{-8}	12/7.7	0.043	16
High, shift	53/5	4.4×10^{-10}	44/990	0.0062	0.059
Kennicutt, no shift	11/5	0.044	24/78	0.012	1.5
Kennicutt, shift	14/5	0.004	17/27	0.038	6.8
Salpeter, no shift	3.4/5	0.64	13/10	0.032	17
Salpeter, shift	4.3/5	0.51	5.8/11	0.056	14
TT02, no shift	3.7/5	0.59	12/7.7	0.043	16
TT02, shift	3.7/5	0.59	10/4.6	0.073	13
No Background	2.8/5	0.73	8.5/2.3	0.15	11

Summary
 Gamma-ray emission from blazars still not well-understood. Leptonic models "preferred," but hadronic models not ruled out (need more work though! especially temporal variability signatures). Complex environment in GeV blazars may hinder progress in understanding them, even with arrival of GLAST. When detailed modeling required, e.g., for IR background constraints, focus on TeV blazars: simpler (?) and better matched to detectors (GLAST area small).
TeV blazars may not be as boring as we once thought. High Doppler boost factor (>20?) => multi-component jet structure? [relativistic spine?]
(Too) large jet kinetic energy? K_e,p order unity? Jet very inefficient radiator? Interaction with local environment, e.g., recollimation shock, may be important.
External photon fields may still be important in TeV blazars (in Mrk 501, can significantly lower energetics). Radical hypothesis: main difference with GeV blazars is higher electron energies and importance of Klein-Nishina effects??
Fossati et altype unification scheme really o.k.? (especially after correct for absorption)
With good broad band, time-resolved X-ray AND gamma-ray data, detailed modeling possible =>interesting constraints. Activity just starting lots of data already in hand (e.g., Mrk 421 2000 flare) and some starting to becoming public ©.
Better data coming soon – one simultaneous observation of an April 16 Mrk 501-type flare by HESS/VERITAS and ASTROE-2 has potential to measure 1-80 micron IR background (but may first cause headaches for modelers – data too good!).

-

Г

Modeler HEALTH WARNING With better data, even factors 2-3 will matter in the future!
Don't ignore Klein-Nishina effects: use correct cross-sections/solve full kinetic equations. in TeV blazars, factor 10 in gamma-rays corresponds to factor 100 in X-rays!
 Use self-consistent models: even if accelerated particle distributions are power laws(?), cooled distributions (and emitted photon spectra) are usually not! often seem to be in "moderate" Klein-Nishina regime => asymptotic approximations poor. don't assume synchrotron and Compton spectral indices match. => do not use phenomenological "power law" models or constraints derived from such models (e.g., Tavecchio et al. 1998). => no more "eyeball" theorist fits
In estimating source parameters, don't ignore absorption by infrared/optical background! (B,R, L_kin can change by factor 10!)
Don't forget time dependence of problem/finite cooling times of particles.
Several emission regions may be active at any given time => confusion, especially at low (keV) energies => watch for big flares, focus on hard X-rays.

If you don't have sensitivity/energy coverage to track curvature/peak in both X-ray/gamma-ray spectra as well as emission from *same* electrons, don't bother...

Figure 1. Poston synchronization binomities of jet features in Prein: A (investein radio last quark), 3C 120 (25" radio knock, and PRS 0007-752 (the outer jet component). The model parameters we described in the text. The optical and X-ray data are from When et al. (2000) for Pictor 3C Harris et al. (1999) for 3C 120 februarie et al. (2001) for Pick (0557-755).

Figure 3. The spectral energy distribution of the knot A1 in SC 273. The radio, optical and X-ray fluxes are from Marshall et al. (2004). The solid, dashed and dot-inshed curves correspond to 3 different sets of model parameters discussed in the text. The decay, standard and this lines represent the fluxes of (1) synchrotron radiation of protons, (2) synchrotron radiation of secondary electrons produced in $p\gamma$ and pp interactions, and (3) π^0 -decay γ -rays produced at pp interactions, respectively.

Lag/lead loops!

Coppi & Aharonian 1999

Fig. 10.— Adaptively smoothed, condided X-ray image in the $0.4\cdot2.5$ keV bandpose of the jet in Centaurus A with 3.6 cm radio contours overlaid. North is up and east is to the left. The radio beam is 3.39° (RA) $\approx 4.70^{\circ}$ (DEC).

Generic Name	R.A. (J2000) hh:mm	Dec. (J2000) dd:mm	*	Class	Dist. (H=50) (Mpc)	kpc/* (H=50)	Assor. radio	Assoc. optical	PA w.r. cor
3C.15	00:37	-01:09	0.0730	FRI RG	453	1.91	knots	knots	-30
3C.31	01:07	+32:25	0.0167	FRI RG	101	0.47	jet	no	-20
<u>R2</u> 0206+35	02:09:38.56	+35:47:50.92	0.0369	FRI RG	225	1.02	Y	N	-46
3C 66B	02:23	+43:00	0.0215	FRI RG	130	0.61	jet	jet	45
3C 120	04:33	+05:21	0.0330	Sy I	201	0.91	25" knot	no	NW
3C 123	04:37	+29:40	0.2177	FRII RG	1448	4.74	hs	no	110
3C 129	04-49-09.06	+45 00 39.34	0.0208	FRI RG	126	0.587	Y	N	14
Pictor A	05:19	-45:46	0.0350	FR.III RG	214	0.97	W hs	yes	-80
PKS 0521	05:25	-36:27	0.055	BL Lac	338	1.475	knots	yex	NW
PKS-0637	06:35	-75:16	0.653	CDQ	5197	9.22	knots	yes	-90
3C 179	07 28 11.65	+67 48 47.5	0.846	LDQ	7223	10.27	knots, hs	N	274
<u>82</u> 0755+37	07:58:28.11	+37 47 11.81	0.0428	FRI RG	262	1.17	Y	γ	+112
3C 207	08:40:47.5	+13:12:23.0	0.68	LDQ	5463	9.38	knot,	7	90

Blazars (Theoretical Overview) P. Coppi, Yale

- 10+ years after discovery of strong gamma-ray emission from blazars, still do not conclusively know the mechanism(s) responsible for the emission.
- If had to bet, strong x-ray/TeV correlation (in TeV blazars at least) + rapid variability timescales + Occam's razor favor a synchrotron-Compton model where the SAME electrons are responsible for xrays and gamma-rays.
- Although TeV blazars are commonly fit with SSC models, not obvious that "external" photons are not important in these objects too (as they are in GeV blazars).
- SC/SSC models make detailed predictions that can be tested by simultaneous, broadband x-ray/gamma-ray observations. Some good data already in hand. More coming with arrival of next generation telescopes + x-ray instruments like Astro E2, JEM-X.

- Example fitting exercise to April 1997 Mrk 501: simple SSC model ruled out! Need quasi-steady, extra X-ray emission component to explain X-ray spectral variability. If add this, then constraints become quite loose.
- Puzzle: month-long Mrk 501 flare sequence fits one "blob" model where all parameters except for electron injection rate are *constant*. What is reason for apparent "stability" (tight X/TeV correlation)? Preferred location of emission region (recollimation shock)? Not obviously expected in internal shock models.
- If want to fit SSC models, use self-consistently derived models or else can get unphysical nonsense.

- SC model gamma-ray spectra NOT simple powerlaws. Intrinsic spectrum can look just like absorbed spectrum, e.g., with exponential cutoff, and can have alpha_x, alpha_gamma < 0.5 => WATCH OUT when "constraining" IR/optical background absorption. Use real models!
- My talk may be completely different after HESS/VERITAS/MAGIC/GLAST... we live in interesting times.

Messy – TeV Blazar, still although cleaner Too many x-rays, cascade

Break, nature cool vs. injection

Compactness parameter

Lags, leads, synch, ssc99 paper figure, thin shock

Particle accel, internal shock model, sikora rev, proton time

Blazejoswki, vs. simple SSC

Proton synch, very fast accel to gamma>10^10, high B, push limits And very large jet energetics, $L_j > 10^{46}$

Nature of jet, e+e-, but when work out energetics protons still dominate L_bol, how much in radn, deceleration,

