Diffuse emission

from the Galactic plane

and unidentified EGRET sources

Martin Pohl

Ruhr-Universität Bochum

Diffuse Galactic Gamma-rays

The Questions

• What is the nature of the excesses in diffuse Galactic γ -rays?

• What fraction of the diffuse Galactic emission is caused by unresolved sources?

• What is the nature of the unidentified EGRET sources?

• What is the relation between the γ -ray excesses and the unidentified γ -ray sources?

The excess at 100 keV

- If truly diffuse, a very high source power in radiating particles would be needed.
- point source contamination unknown (\rightarrow INTEGRAL).

The GeV excess

- Unlikely to be an instrumental effect.
- Spectral extent towards higher energies is marginally constrained.

Diffuse Galactic Gamma-rays

• Apparently visible also at high latitudes!

(Observation of extragalactic emission, Sreekumar et al. 1998)

Table 1. Results from the all-sky correlation analysis

Energy (MeV)	Normalization(B)	A
30–50	1.14	(1.20 ± 0.32) E-06
50-70	1.04	(6.56 ± 0.96) E-07
70 - 100	1.09	(2.59 ± 0.09) E-07
100 - 150	1.05	$(1.09\pm0.04)E-07$
150-300	0.97	(3.53 ± 0.14) E-08
300 – 500	0.97	$(9.56\pm0.47)E-9$
500 - 1000	1.09	$(2.59\pm0.14)E-9$
1000-2000	1.34	(6.69 ± 0.36) E-10
2000 – 4000	1.85	(2.03 ± 0.14) E-10
4000 - 10000	1.56	(3.10 ± 0.28) E-11

$$\frac{\mathrm{Data}}{\mathrm{Model}} = B \simeq 1.3 - 1.8 \qquad \text{for} \quad E > 1 \text{ GeV }, \quad |b| > 10^{\circ}$$

Suggests existence of GeV excess at high latitudes!

Viewgraph 7

Unresolved sources in the diffuse emission

The contribution of known sources is small!

But see also McLaughlin & Cordes (2000)

Diffuse Galactic Gamma-rays

Viewgraph 8

The nature of unidentified sources

- How do we know they're Galactic?
- Can't tell for HEGRA source in Cygnus.
- Spatial distribution of EGRET sources
 ⇒ ~100 unidentified EGRET sources are Galactic
- EGRET systematics influence the population studies:
- Flat-spectrum sources are more easily found in region of high background.
- Backward-folding in EGRET standard analysis can cause "false" variability of Galactic plane sources.
- Correlation studies with known classes of sources are hampered by the large number of objects.

What to expect from different source classes?

- Pulsars
 - constant flux
 - wide latitude distribution

Few sources have the "typical" hard spectrum!

Off-beam emission in polar-cap model (Harding & Zhang 2001)

 \rightarrow low luminosity with soft spectrum.

- Supernova remnants
 - constant flux
 - narrow latitude distribution

TeV detection of only three SNR.

 \rightarrow no clear evidence for hadronic emission.

Extrapolations from TeV behaviour to GeV appearance are difficult.

Diffuse Galactic Gamma-rays

Example: RX J1713.7-3946

Enomoto et al., 2002:

IC interpretation is in conflict with the data.

Reimer & Pohl, 2002:

 π^0 -decay interpretation is in conflict with the data.

Viewgraph 11

- \bullet Relative $\nu F_{\nu}\text{-sensitivity}$ of EGRET and ACTs
- Expected γ -ray spectra from SNR
- \Rightarrow At most a few SNR can be EGRET sources.

O_{r}

SNR do not accelerate cosmic rays to more than ~ 10 TeV.

What about unresolved SNRs?

- Could contribute significantly at TeV energies (by π^0 -decay). (Berezhko & Völk 2000)
- Presumably a minor contribution at GeV energies. $({\rm compare\ with\ B/C\ ratio})$
- This would not explain the GeV excess.

Diffuse Galactic Gamma-rays

Viewgraph 12

What about the Swiss Cheese model?

The hard IC interpretation of the ${\rm GeV}$ excess requires an SNR origin of CR electrons.

Pohl & Esposito 1998 Strong, Moskalenko, & Reimer 2000

It was assumed that accelerated electrons are instantly released, but produced over 10^5 years.

Then for TeV electrons with $\tau_l \simeq 10^5$ years

- \Rightarrow Enhancements with radius 200 pc
- \Rightarrow IC Enhancements with radius 2.3deg for D=5 kpc.
- ⇒ Nearby enhancements wouldn't not be point sources!

Is that realistic?

CR's are NOT instantly released!

SNR radius is ~ 50 pc or 0.6deg for D=5 kpc

Close to a point source?

BUT: The precursor thickness increases!

$$\delta r \simeq \frac{\kappa}{V} \simeq 0.2 \, \eta \, \, \mathrm{pc}$$
 with $\kappa = \eta \, \kappa_{\mathrm{Bohm}}$
 $\Rightarrow \delta r \gg 1 \, \, \mathrm{pc}$ for $\eta \gg 1$

No strong conflict with non-detection of SNR!

Have still ~100 unidentified sources!

Torres et al, 2001:

- ~ 40 UnIds are not positionally coincident with any known class of potential γ -ray emitters in the Galaxy.
- Many are variable (like AGN)
- The spectra are soft with $<\gamma>=2.4\pm0.2$
- ⇒ Must be a new class of objects!
- They can't contribute to the GeV excess
- \bullet The luminosity should be $\gtrsim 10^{34}~\rm{ergs/sec}$ in the EGRET band.
- ⇒ No evidence

for a point source origin of the GeV excess!

Diffuse Galactic Gamma-rays

Summary and conclusions

- About 100 EGRET UnId's seem to be Galactic.
- A small fraction of them will be Pulsars and SNR.
- The majority of them comes from a other classes of objects.
- Diffuse γ -ray excesses are observed at 100 keV and a few GeV.
- INTEGRAL will tell the point source fraction at 100 keV.
- The GeV excess is probably not caused by unresolved sources.
- Hard IC models of the GeV excess are not in strong conflict with non-detection of SNR or SNR halos by EGRET.