太陽反電子ニュートリノ探索

伊藤博士（東大宇宙線研）

自己紹介

伊藤 博士（ひろし）

東大宇宙線研 特任研究員

> 趣味: ドライブ, 麻雀, 漫画,アニメ, ボードゲーム, etc

1990年生まれ 千葉出身
千葉大学～2017年9月
シリカエアロゲルを用いた環境ストロンチウム放射能測定静止K中間子を用いたe－μ レプトン普遍性破れ探索（J－PARC E36）

神戸大学 2017年10月～2018年3月
アルファ線イメージ分析装置（AICHAM）の開発放射能データベース（MARACAS）

東大宇宙線研 2019年4月～
スーパーカミオカンデ実験
太陽反電子ニュートリノやってます

SOLAR ANTINEUTRINOS

Robert A. Malaney and Bradley S. Meyer

Institute of Geophysics and Planetary Physics, University of California, Lawrence Livermore National Laboratory
AND
Malcolm N. Butler ${ }^{1}$
Tri Universities Meson Facility, Vancouver, Canada
Received 1989 April 24; accepted 1989 September 28

ABSTRACT

As a consequence of natural radioactivity, the flux of low-energy (53 MeV) solar antineutrinos predicted by the standard solar model is $\sim 200 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. This solar antineutrino flux, however, is overwhelmed by the large antineutrino background arising from terrestrial radioactivity. We show here that as a consequence of photofission reactions occurring in the solar interior a more energetic ($3-9 \mathrm{MeV}$) flux of solar antineutrinos of $\sim 10^{-3} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ should exist. Although orders of magnitude below current detectability levels, a future directionally sensitive detector, with a low energy threshold to eradicate background terrestrial decays, could enable the energetic solar antineutrino flux to be measured. The consequences of such a detection could have ramifications for our current understanding of neutrino physics and physical processes occurring deep in the solar interior.
Subject headings: neutrinos - nuclear reactions - Sun: interior

1．太陽反電子ニュートリノ

2．$v_{e} \rightarrow \overline{v_{e}}$ 振動

標準二ユートリノ振動

$$
\begin{aligned}
& \left|\nu_{\alpha}\right\rangle=\sum_{i} U_{\alpha i}\left|\nu_{i}\right\rangle \\
& P\left(\nu_{\alpha} \rightarrow \beta\right)=\sin ^{2} 2 \theta \sin ^{2} \frac{1.27 \Delta m^{2}\left(e V^{2}\right) L(k m)}{E_{\nu}(\mathrm{GeV})}
\end{aligned}
$$

ニュートリノ振動ハミルトニアン摂動計算

$$
\begin{aligned}
& \left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
v_{\tau} \\
\bar{v}_{e} \\
\bar{v}_{\mu} \\
\bar{v}_{\tau}
\end{array}\right)=\left(\begin{array}{c}
\\
H+d H \\
(6 \times 6)
\end{array}\right)\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau} \\
\bar{v}_{e} \\
\bar{v}_{\mu} \\
\bar{v}_{\tau}
\end{array}\right) \\
& \text { 標準 } \nu \text { 振動 } \\
& \text { ハミルトニアン } \\
& \text { H } \\
& \text { CP破れ+ロー } \\
& \text { レンツ破れ項 } \\
& \text { dH }
\end{aligned}
$$

$$
P_{\bar{\nu}_{b} \rightarrow \nu_{a}}^{(0)}=P_{\nu_{b} \rightarrow \bar{\nu}_{a}}^{(0)}=0 .
$$

$$
P_{\nu_{b} \rightarrow \bar{\nu}_{a}}^{(1)}=P_{\bar{\nu}_{b} \rightarrow \nu_{a}}^{(1)}=0
$$

$$
P_{\nu_{b} \rightarrow \bar{\nu}_{a}}^{(2)}=t^{2}\left|\mathcal{H}_{\bar{a} b}^{(1)}\right|^{2},
$$

$$
P_{\bar{\nu}_{b} \rightarrow \nu_{a}}^{(2)}=t^{2}\left|\mathcal{H}_{a \bar{b}}^{(1)}\right|^{2},
$$

$$
\frac{P_{\bar{\nu}_{b} \rightarrow \nu_{a}}^{(2)}}{L^{2}} \equiv\left|\mathcal{H}_{a \bar{b}}^{(1)}\right|^{2} \quad \text { Non-zero }=>\text { Lorentz violation }
$$

$$
=\left(P_{\mathcal{C}}^{(2)}\right)_{a \bar{b}}+\left(P_{\mathcal{A}_{s}}^{(2)}\right)_{a \bar{b}} \sin \omega_{\oplus} T_{\oplus}
$$

$$
+\left(P_{\mathcal{A}_{c}}^{(2)}\right)_{a \bar{b}} \cos \omega_{\oplus} T_{\oplus}+\left(P_{\mathcal{B}_{s}}^{(2)}\right)_{a \bar{b}} \sin 2 \omega_{\oplus} T_{\oplus}
$$

$$
+\left(P_{\mathcal{B}_{c}}^{(2)}\right)_{a \bar{b}} \cos 2 \omega_{\oplus} T_{\oplus}+\left(P_{\mathcal{D}_{s}}^{(2)}\right)_{a \bar{b}} \sin 3 \omega_{\oplus} T_{\oplus}
$$

$$
+\left(P_{\mathcal{D}_{c}}^{(2)}\right)_{a \bar{b}} \cos 3 \omega_{\oplus} T_{\oplus}+\left(P_{\mathcal{F}_{s}}^{(2)}\right)_{a \bar{b}} \sin 4 \omega_{\oplus} T_{\oplus}
$$

$$
+\left(P_{\mathcal{F}_{c}}^{(2)}\right)_{a \bar{b}} \cos 4 \omega_{\oplus} T_{\oplus}
$$

理論計算は複雑だが，つまり $v_{e} \rightarrow \overline{v_{e}}$ 振動したら標準ニュートリノ振動を逸脱する

2．$v_{e} \rightarrow \overline{v_{e}}$ 振動

スピン・フレーバー振動モデル

Phys．Lett．B 553 （2003） 7.
太陽内部の強磁場によって v_{e} が $\overline{v_{\mu}}$ に変わり（ス ピンフレーバー振動），地球へ到達するまでに通常の振動で $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ に変わる過程を経て $v_{e} \rightarrow \overline{v_{e}}$振動するモデルが予言された。 $v_{e} \rightarrow \overline{v_{e}}$ 振動の確率は

$$
\begin{aligned}
& P\left(v_{e L} \rightarrow \bar{\nu}_{e R}\right) \\
& \quad \simeq 1.8 \times 10^{-10} \sin ^{2} 2 \theta\left[\frac{\mu}{10^{-12} \mu_{B}} \frac{B_{\perp}\left(0.05 R_{\odot}\right)}{10 \mathrm{kG}}\right]^{2},
\end{aligned}
$$

ここで，μ はニュートリノ磁気モーメント，μ_{B} はボーア磁子，B_{\perp} は太陽内部磁場，$\theta_{12} \sim 34.5^{\circ}$ は振動パラメータ。

3．Review of solar $\overline{v_{e}}$ search

SK 2008～2018 dataを使えば感度改善するか？
－KamLAND＝1kton， 4.53 kton－year
－ $\mathrm{SK}=22.5$ kton， 2970 days $=183$ kton－year

4．スーパーカミオカンデと反電子ニュートリノ検出

$1 \mid$ grep上意
Unper wise of Super－Kaniokande

3 ｜rexplatit
Peosonutipler nowpurls

Insibe of Super Kaniohande

Specification
$\mathrm{H} 40 \mathrm{~m} \times \phi 40 \mathrm{~m}$
50 kton pure－water
20＂PMTs ID：11，129
8＂PMTs OD：1，885
Data take from 1996

4．スーパーカミオカンデと反電子ニュートリノ検出

Direction distribution $\cos \theta_{\text {sun }}$

Phys．Rev．D 94， 052010 （2016）

FIG．17．Solar angle distribution for 3.49 to $19.5 \mathrm{MeV} . \theta_{\text {sun }}$ is the angle between the incoming neutrino direction r_{ν} and the reconstructed recoil electron direction $r_{\text {rec }} . \theta_{z}$ is the solar zenith angle．Black points are data while the histogram is the best fit to the data．The dark（light）shaded region is the solar neutrino signal（background）component of this fit．

反電子ニュートリノ事象検出

$$
\overline{v_{e}} p \rightarrow e^{+} n \text { (IBD: Inverse beta decay) }
$$

（Delayed signal）
As neutron tag

$$
\Delta t \sim 256 \mu s
$$

$$
\Delta t \sim 30 \mu s
$$

2008年からAFT trigger回路が実装された

4．スーパーカミオカンデと反電子ニュートリノ検出

TMVA 機械学習によるlikelihood法

（b）

Missed

10－ns－win hit－PMT間の vertex中心からの角度平均

10－ns－win hit－PMT間のvertex中心からの角度のばらつき

4．スーパーカミオカンデと反電子ニュートリノ検出

TMVA 機械学習によるlikelihood法

TMVA overtraining check for classifier：SET06＿01

4．スーパーカミオカンデと反電子ニュートリノ検出

Background estimation

```
MLP threshold =0.95
    ntag efficiency = 20.6%
    (in fact, ntag cut have been applied.)
    This eff. is fixed to 20% for solar-}\overline{v}\mathrm{ .
この閾値の最適化はするが...
```

ここでsensitivityを計算は，Accidental とReactorが決まれば評価可能。

5．今後の展望

－Solar $\overline{v_{e}}$ の結果はそろそろでるよ。Paper のスケールは年度末くらい
－SK－Gdで，$\overline{v_{e}}$ 検出効率改善して，右図のみ どり太破線の領域で $v_{e} \rightarrow \overline{v_{e}}$ 振動を探す。
－有意な信号が検出された場合，年間の事象頻度の変動（太陽一地球間の距離より）から太陽由来の信号であることを裏付ける。

まとめ
－太陽由来の反電子ニュートリノが～ $\mathrm{O}\left(10^{-1} \sim 10^{-0}\right) \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ のスケール で存在する場合 $v_{e} \rightarrow \overline{v_{e}}$ 振動が示唆される。ローレンツ不変性の破れ ＝＞新物理

- もはや，超新星背景ニュートリノ（SRN）ですらBackground！
- Super Kamiokandeの中性子捕獲事象選択によって，$\overline{v_{e}}$ 事象を検出 する。TMVAによる機械学習を用いたliklihood法（今流行りの）によっ て，効率よく， $\bar{v}_{e} \mathrm{p} \rightarrow \mathrm{ne}^{+}$事象を抜き出した。
－MCシミュレーションでカット条件などもほぼ決まった。BG評価も， reactorとaccidentalくらが残っているだけ。Dataはそろそろ開示し たいかな。

