広視野・低雑音 MeV ガンマ線望遠鏡 ETCC の 天体撮像能力実証を目指した オーストラリア気球実験 SMILE-2+

<u>阿部光</u>,

谷森達,高田淳史,水村好貴,竹村泰斗,吉川慶,中村優太,小野坂健,斎藤要, 水本哲矢,窪秀利,古村翔太郎,岸本哲朗,中増勇真,谷口幹幸(京都大学), 黒澤俊介(東北大学),身内賢太朗(神戸大学),澤野達哉(金沢大学), 小財正義(ISAS/JAXA),荘司泰弘(大阪大学) 2019年10月16日 名古屋大学 ISEE

目次

- イントロ
- ・ ETCC と SMILE 計画の概要
- SMILE-2+ 観測データの解析
- 将来計画

電子飛跡検出型コンプトンカメラ ETCC

- ガス飛跡検出器 (TPC) 、反跳電子の飛跡とエネルギー
- ・位置有感シンチレーション検出器(GSO + PMT) 散乱ガンマ線の吸収点とエネルギー

検出事象ごとに コンプトン散乱における全物理量を取得

 到来方向を一意に決定
 天空上の像の拡がり関数PSFを厳密定義
 大きな視野[~]3 str
 α角によるコンプトン散乱運動学テスト とエネルギー損失率による粒子識別で 冗長な雑音除去能力

SMILE-2+ Alice Springs ▶ 気球

アリススプリング(2018年4月) 水平浮遊高度: 38.9 km ペイロード重量:~500 kg

▶ 検出器

Geant4 シミュレーション -> ◆ 有効面積:[~]2 cm² @ 300 keV • PSF: $^{\sim}10^{\circ}$ (half power radius)

◆ エネルギー帯域:0.3~1.5 MeV

▶ 観測対象

Check of gamma-ray imaging

Calibration at Alice Springs

ETCCのガンマ線解析

2つの独立したデータ群に対し、異なる解析手法を適応

銀河中心南中とイベントレートの変化

4/7 21:00-23:00 (ACST)

gamma ray spectrum

銀河中心領域での強度算出

この延長線上の将来の衛星観測で、sub-mCrabの感度が実現できる。

次期計画へ

検出感度を向上させて科学観測へ

⇒ @ Alice Springs: e[±]の銀河面分布・Cen A・NGC4945他
 @ Fort Sumner: Cyg X-1 / Crabの偏光観測

有効面積を>10倍、角度分解能2~3倍改善していく為に…

SMILE-2+での 511 keVガンマ線の観測予測

Alice Springで 1日観測した場合のexposure

まとめ

- SMILE-2+の目的は天体観測によるイメージングの実証
- 2018年4月にオーストラリアで気球実験を実施。
- 1日のフライトで銀河中心領域を8時間、かに星雲を6時間の観測に成功した。
- 観測対象

銀河中心領域 想定:5 σ (511±50 keVにおけるON-OFF)

観測:5 σ (511±50 keVにおけるON-OFF)

3.5 σ (連続成分に対する511 keVの有意度)

 10σ (連続成分、ON-OFF)

かに星雲 想定:5σ

観測: $~3\sigma$ (若干高度が低い)

- 低・高エネルギー事象ともに、銀河中心領域の南中に同期した計数率の増加を確認。
- ・ 低エネルギー事象に関して、銀河中心領域からのスペクトルを算出。これまでの観測と近しい値。
- 今後、検出器のシミュレーションの改善・バックグラウンド事象の評価、 レスポンス引き
 戻し法の確立し、系内・系外・大気拡散ガンマ線の算出、 銀河座標マップを作成する。
- SMILE-3 有効面積 ~10 cm2, 角度分解能 5~10度

⇒ 系内拡散ガンマ線/511 keVの銀河面分布・Cen A・26Al…etc

• SMILEのロードマップ実現を担保する結果が得られた。MeVガンマ線の夜明けは近い

今後の解析で、宇宙拡散ガンマ線を精度よく決める。

N. Prantzos, et al, 2011

Source	Process	$E(e^+)a$	e^+ rate ^b	Bulge/Disk	Comments
		(MeV)	$\dot{N}_{e^+}(10^{43} \text{ s}^{-1})$	B/D	
Massive stars: ²⁶ Al	β^+ -decay	~ 1	0.4	< 0.2	$\dot{N}, B/D$: Observationally inferred
Supernovae: ²⁴ Ti	β^+ -decay	~ 1	0.3	< 0.2	\dot{N} : Robust estimate
SNIa: ⁵⁶ Ni	β^+ -decay	$\sim \! 1$	2	< 0.5	Assuming $f_{e^+,esc}=0.04$
Novae	β^+ -decay	~ 1	0.02	$<\!0.5$	
Hypernovae/GRB: ⁵⁶ Ni	β^+ -decay	~1	?	< 0.2	Improbable in inner MW
Cosmic rays	p-p	~30	0.1	< 0.2	Robust estimate
LMXRBs	$\gamma - \gamma$	$\sim \! 1$	2	< 0.5	Assuming $L_{e^+} \sim 0.01 \ L_{obs,X}$
Microquasars	$\gamma-\gamma$	~ 1	1	< 0.5	
Pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.5	< 0.2	
m s pulsars	$\gamma - \gamma / \gamma - \gamma_B$	>30	0.15	$<\!0.5$	
Magnetars	Y Y/Y YB	>30	<u> </u>	< 0.2	e^+ yield overestimated (?)
Central black hole	p-p	High	?		
	$\gamma-\gamma$	1	?		Requires e^+ diffusion to ${\sim}1~{ m kpc}$
Dark matter	Annhilation	1(?)	?		Light scalar required, only NFW profile allowed
	Deexcitation	1	?		Only NFW profile allowed
	Decay	1	?		Ruled out by obs. and theor. DM profiles
Observational constraints		<7	2	1.4	

系内&系外拡散ガンマ線

galdef ID 54_z04LMS

× Intensity, cm² sr⁻¹ s⁻¹ MeV 01 20 0.00<l<30.00, 330.00<l<360.00 -10.00<b<-0.00, 0.00<b<10.00 Strong, et al., 2011 SPI line sr-1 10 Fermi LAT united in the EGRET - Sreekumar et al. 1998 MPT F °, EGRET - Strong et al. 2004 E² dN/dE [MeV cm⁻² Fermi LAT, IGRB + resolved sources (|b|>20) 10⁻² foreground model A ш Galactic foreground modeling uncertainty 10⁻³ 10⁻³ HEAO-1 - Gruber et al. 1999 HEAO-A4 (MED) - Kinzer et al. 1997 10⁻⁴ 10 Nagoya balloon - Fukada et al. 1975 10⁻² 10⁻¹ 10² 10³ 10⁴ 10 10 Energy, MeV ASCA - Gendreau et al. 1995 SMM - Watanabe et al. 1997 RXTE - Revnivtsev et al. 2003 10-5 Ackermann, et al, 2015 BAT - Ajello et al. 2008 INTEGRAL - Churazov et al. 2007 Total EGB COMPTEL - Weidenspointner et al. 2000 m m l 10⁻⁶ 10⁻³ 10-2 10² 10^{3} 10⁵ 10⁻¹ 10^{4} 10⁶ 1 10 Energy [MeV]