

TA実験における

名前:中村智行 所属:信州大学 工学部 4年 出身:神奈川県藤沢市 趣味:スキー、同人誌作り

1. TA実験(Telescope Array)

- ▶ 超高エネルギー宇宙線
- ≻ 大気蛍光望遠鏡
- 2. CLFシステム (Central Laser Facility)
- 3. 大気透明度算出方法
- 4. 大気透明度解析
 - 大気透明度分布
 - ▶ 季節による依存

5. まとめ

YMAP

目的:超高エネルギー宇宙線の観測

YMAP

複合球面鏡 (口径 約3m) 蛍光光を反射集光

PMT256本 (16×16のハニカムアレイ状)

	 -04:chi2			-10:chi2
After a state of the state of t	05:chi2	07:chi2	09:chi2	11:chi2

実際に観測された、FD視野内を通る空気シャワー

望遠鏡ステーション

空気シャワー現象により 窒素分子が励起して蛍光を発する

- 観測サイトは広大な砂漠地帯
- ・ 大気中にエアロゾル(塵、埃)が存在
- エアロゾルの分布は風によって短時間で変化

伝搬過程で蛍光光が減衰

SHINSHU Central Laser Facility (CLF)

CLF配置図

- レーザーを垂直に射出
 - レーザーの側方散乱光を望遠鏡で受光 - <u>受光量とレーザーエネルギー</u>から解析
- 望遠鏡3ステーションから等距離に配置
 3台の望遠鏡で大気透明度解析が可能

SHIVERSHU 大気透明度算出方法

(1 T. Tomida, "宇宙線望遠鏡計画における大気透明度の研究", PhD thesis, University of Yamanashi, 43-45(2012).

YMAP

• 基準大気の条件:エアロゾルが存在しない大気

高度4.5~5.5kmの大気において

- 複数のステーションで受光量が高い
- 別高度でも受光量が高い

受光量の高い上位5%以上のデータの平均を基準大気として採用

2013年11月30日 宇宙線観測時間中のVAODの変化

TA実験におけるCLFを用いた大気透明度解析

- 大気透明度(VAOD)解析
 - TA-LIDARの結果と中央値の分布幅で一致
 - VAODの季節依存性を示唆
- ・今後の展望
 - 残るステーションにおけるVAOD解析
 - TA実験全期間のVAOD解析
 - 解析結果を望遠鏡への較正に適用

Back Up

実際に観測された、FD視野内を通る空気シャワー

Vertical Aerosol Optical Depth(VAOD)

$$\tau_{\rm AS}({\rm H}) = \int_0^{\rm H} \alpha(h) dh$$

α 消散係数Η 散乱高度

地表から高さHまで、消散係数を積分した値 →エアロゾルの光学的厚さ

高度5km以上における大気透明度を算出

T. Tomida, "宇宙線望遠鏡計画における大気透明度の研究", PhD thesis, University of Yamanashi, 43-45(2012).

通常	Np(H) =	$ET_{AS}(H)T_{Ray}(H)(S_{AS} + S_{Ray})T_{AS}(L)T_{Ray}(L)$	ı)
			-

基準
$$Np_{ideal}(H) = E'T_{Ray}(H)S_{Ray}T_{Ray}(L)$$

①水平方向に対して大気状態が一定
②解析高度が5km以上(大気分子が支配的)
 $\frac{Np(H)}{Np_{ideal}(H)} = \frac{E}{E_{\prime}} \exp\left[-\tau_{AS}(H)\frac{\sin\theta+1}{\sin\theta}\right]$
S: 微分散乱係数
T: 大気透明度
H: 散乱点の高さ
L: 散乱点 - FD間距離
 $\tau: VAOD$

・ 基準大気の条件:エアロゾルが存在しない大気
 ▶ 観測した中で極めて綺麗な状態の大気を基準として設定

<u>基準大気選択アルゴリズム</u> 高度4.5~5.5kmの大気において

- 複数のFDステーションで受光量が高い
- 別高度でも受光量が高い
 - ・このうち受光量の高い上位5%以上 のデータの平均を基準大気として 採用

・基準大気の条件:エアロゾルが存在しない大気
 ▶ 観測した中で極めて綺麗な状態の大気を基準として設定

<u>基準大気選択アルゴリズム</u> 高度4.5~5.5kmの大気において

- 複数のFDステーションで受光量が高い
- 別高度でも受光量が高い
 大気が満遍なくきれいな状態

このうち受光量の高い<mark>上位5%</mark>以上のデータの 平均を基準大気として採用

雪による受光量の影響例

2015年9月~2016年9月 BRM 高度5kmにおけるVAOD分布

YMAP

