

Time structure analysis of extensive air showers using Telescope Array data

Rosa Mayta Palacios 16-18 /10/2019 YMAP @ Nagoya University

Contents

- Ultra High Energy Cosmic Rays
- Energetic particle from the Universe ($E > 10^{18} \text{ eV}$)
- Telescope Array
- A huge observatory for UHECR in northern hemisphere
 - Surface detector array(SDs), Fluorescence Detector (FD)
- Data Analysis of Time profile
 - Shower front
 - Thickness of shower disk

Cosmics Rays

 $\frac{dN}{dE} \propto E^{-\alpha}$

TELESCOPE ARRAY Experiment

Hybrid Experiment

SD- Surface Detector

FD- Fluorescence Detector

Cosmic rays: TA

UHECR phenomenology

Detection

- Telescope Array
- Pierre Auger Observatory

Time structure with SD data

Surface detector

Scintillator Box

- Resolution: 20ns
- Window gate: 2.56 µs

Time Structure

10

The air shower structure depends on energy, arrival direction, primary mass and on the interaction mechanism with air nuclei.

- the curvature of the shower front by using the definition of residual time t_d with respect to the shower plane by using t_{hit}.
- the thickness of the shower disk by analyzing the observable rise time based on the accumulated waveforms t_R.

Curvature front

Obtention of time at core location

$$\begin{aligned} \tau &= (8 \times 10^{-4} \mu \text{S}) \, a(\theta) \left(1.0 + \frac{s}{30 \text{m}} \right)^{1.5} \rho^{-0.5} \\ \sigma_{\tau} &= (7 \times 10^{-4} \mu \text{S}) \, a(\theta) \left(1.0 + \frac{s}{30 \text{m}} \right)^{1.5} \rho^{-0.3} \\ a(\theta) &= \begin{cases} 3.3836 - 0.01848 \, \theta & \theta < 25^{\circ} \\ c_3 \, \theta^3 + c_2 \, \theta^2 + c_1 \, \theta + c_0 & 25^{\circ} \le \theta < 35^{\circ} \\ \exp(-3.2 \times 10^{-2} \, \theta + 2.0) & \theta > 35^{\circ} \end{cases} \\ c_0 &= -7.76168 \times 10^{-2}, \, c_1 = 2.99113 \times 10^{-1}, \\ c_2 &= -8.79358 \times 10^{-3}, \, c_3 = 6.51127 \times 10^{-5} \end{aligned}$$

Residual time

 $t_d = t_{hit} - t_0 - t_{plane}$

Log(E/eV) = 18.90 - 19.08, $sec(\theta) = 1.00 - 1.20$

Residual time parameters: A & B

A & B parameters has dependence on Energy

Shower front for late showers

$$t_{delay} = 2.6 \times \left(1 + \frac{\kappa}{30\mathrm{m}}\right)^{((1.80\pm0.01) - (0.35\pm0.01)\times\mathrm{sec}\theta)} \times \rho^{-0.39\pm5.55\times10^{-3}} [m^{-2}][ns]$$

D

$$t_{delay} = 2.6 \times \left(1 + \frac{R}{30\mathrm{m}}\right)^{(1.80 \pm 0.01) - (0.33 \pm 0.01) \times \mathrm{sec}\theta)} \times \rho^{-0.45 \pm 7.45 \times 10^{-3}} [m^{-2}][ns]$$

$$t_{delay} = 2.6 \times \left(1 + \frac{R}{30\mathrm{m}}\right)^{(1.86 \pm 0.02) - (0.34 \pm 0.02) \times \mathrm{sec}\theta)} \times \rho^{-0.54 \pm 0.01} [m^{-2}][ns]$$

Thickness of shower disk

Log(E/eV) = 19.15 - 19.45, $sec(\theta) = 1.00 - 1.20$, $\zeta = -180.00 - 180.00$

 $\langle t_R \rangle = (a \times R + b)[ns]$

The slope(a) is considered as factor of thickness of shower

1.

Azimuthal (Zeta) Dependency

Late The slope(a) is considered as factor of thickness of shower disk

Zeta Vs Slope angle (1)

Fix Log(E/eV) : 18.85 - 19.15

Fix R range: 500 - 1200 [m]

Fix $sec(\theta) : 1.0 - 1.2$

* The thickness of particles is slightly ticker for "early" detectors than for "late"

Zeta Vs Slope angle (2)

Time structure: Asymmetry in ζ angle

Shower front

Shower disk thickness

- TA-SD data of (11 years observed) was used to study air shower structure using waveforms.
- It was studied shower front by time delay:
 - Fit AGASA function time delay $-> \langle t_d \rangle = 2.6 \times \left(1 + \frac{R}{30m}\right)^A \times \rho^B [m^{-2}][ns]$
 - Parameter A has dependance on zenith
 - A and B has not Energy dependance
- It was analyzed risetime(t_R) to understand air shower:
 - Using information of risetime from (10-50)% of total wf.
 - $\circ\,$ It is proposed a linear function in R range (500-1200) m –> $\langle t_R
 angle = (a imes R+b)[ns]$
 - The offset(b) and slope (a) has dependance on zenith
 - It was analyzed slope(a) to observe dependences:
 - It could see tendency on azimuth angle and energy dependance.

Event reconstruction

Extensive Air Shower (EAS) Gaisser-Hillas (G-H) formula E>10¹⁶ eV $N(X) = N_{max} \left(\frac{X - X_0}{X_{max} - X_0}\right)^{\frac{X_{max} - X_0}{\lambda}} exp\left(\frac{X_{max} - X}{\lambda}\right)$ Number Particles Proton MC N_{max} 3000 Mean 750 RMS 64.5 2500 Iron MC THE REAL Mean 688 2000 RMS 42.1 5 1500 Composition study 1000 500 $X_{\rm max}$ 500 700 800 1000 1100 600 900 X_{max} [gm/cm²] GeV muons Energy Reconstruction $E = \lambda N_{max} \frac{d\bar{E}}{dY} \left(\frac{e}{\epsilon}\right)^{\epsilon} \Gamma(\epsilon+1)$ TeV muons

Primary energy determination

