GRAINE2018年気球実験準備状況

名古屋大学M1 中村悠哉

2017/10/15~17 宇宙素粒子若手の会:秋の研究会@東大柏キャンパス

自己紹介

- 中村悠哉 名古屋大学(F研)M1
 F研の研究紹介
 GRAINE(r線)
 ミューオンラジオグラフィー
 NINJA(ニュートリノ実験)
 NEWSdm(ダークマター)
 その他(超冷中性子,ニュートリノ,アクシオン)
- ・学部4年の頃はいろんな実験に首を 突っ込みまくっていた
- ・その頃から本命はGRAINE
- ・(趣味:サッカー)

γ線は宇宙線の起源を探る[★] 上で重要なプローブとなる

SNR,GRB,AGN...

10

 10^{2}

10

10

10

10

10

10

 10^{-1}

10⁻²²

10⁻²⁵

10 - 28

 \bigstar

Fluxes of Cosmic Rays

Knee (1 particle per m²—year)

(1 particle per m²-second)

Ankle

 $\underbrace{\mathsf{GeV}}_{\mathsf{10}^9} \underbrace{\mathsf{10}^{10}}_{\mathsf{10}^{11}} \underbrace{\mathsf{10}^{11}}_{\mathsf{10}^{12}} \underbrace{\mathsf{10}^{13}}_{\mathsf{10}^{14}} \underbrace{\mathsf{10}^{15}}_{\mathsf{10}^{16}} \underbrace{\mathsf{10}^{17}}_{\mathsf{10}^{16}} \underbrace{\mathsf{10}^{19}}_{\mathsf{10}^{19}} \underbrace{\mathsf{10}^{29}}_{\mathsf{10}^{21}} \underbrace{\mathsf{10}^{21}}_{\mathsf{EeV}} \underbrace{\mathsf{Ferg}}_{\mathsf{ZeV}} \underbrace{\mathsf{TeV}}_{\mathsf{EeV}}$

(1 particle per km^2 -year)

Flux (m² sr s GeV)⁻¹

	Telescope	detected sources			
1990-2001	EGRET	271			
2008-	Fermi-LAT	>3000			

5 years, E>1 GeV

原子核乳剤(エマルション)

ゼラチン中にAgBr 結晶を充填

荷電粒子の電離作用によ りできた電子が銀イオン を還元し銀核が生成 ー定数以上の銀核を持つ 結晶のみを選択的に還元 させ銀粒子を成長させる 未反応のAgBr結晶を溶 かし出す

高い空間分解能を持ち、3次元の飛跡情報を記録できる

原子核乾板(エマルションフィルム)

GRAINE計画

原子核乾板を気球に搭載して高空(>高度35km)で大面積 (10m²)でのγ線精密観測を行う。

			-
	Femir-LAT	GRAINE	
角度分解能@100MeV	6.0°	1.0°	
角度分解能@1GeV	0.90°	0.1 °	
偏光感度	-	あり	-
有効面積@100MeV	0.25m ²	2.1m ²	-
有効面積@1GeV	0.88m ²	2.8m ²	

世界最高角度分解能 世界初偏光有感 世界最大口径

分解能向上によるインパクト(X線の前例)

■1990年ROSAT(△ *θ* ~2arcsec)

■1999年 チャンドラ(Δ θ~0.5arcsec)

高速回転する中性子星(かに星雲)

分解能向上によるインパクト(X線の前例)

■1990年ROSAT(Δ *θ* ~2arcsec)

■1999年 チャンドラ(Δ θ~0.5arcsec)

取り巻くリング構造

中心天体

明瞭に発見!

高速回転する中性子星(かに星雲)

吹き出すジェット構造

観測機の改善によって新たな発見が期待できる

天の川銀河中心の観測

Fermi two-year all-sky map

NASA

Termi

- 2014年 6年分のデータ
- 複数のグループが天の川銀河の中心でガンマ線
 の超過の存在を発表。
 - D.Hooper et al. 他
 - NASA HP
 - 日本物理学会誌

edit: NASA/DOE/Fermi/LAT Coll

銀河中心の高エネルギー現象の理解は混沌とした状況

GRAINE計画

2004年– 地上での技術開発

S.Takahashi et al. NIMA 620, 192 (2010) K.Ozaki et al. NIMA 833, 165 (2016)

2011年6月 JAXA国内気球実験

気球高度において観測コンセプトを実証
H.Rokujo et al. NIMA 701, 127 (2013).
S.Takahashi et al. PTEP 2015 043H01

2015年5月 JAXA国際気球実験

- 海外サイトでの実験スキーム確立
- ・ 望遠鏡性能実証
 K.Ozaki et al., JINST 10, P12018 (2015)
 S.Takahashi et al. PTEP 2016, 073F01
 +テクニカルペーパー準備中

2018年4月 JAXA国際気球実験

• 天体検出による総合実証

2021年~ 大面積望遠鏡による科学観測開始

GRAINE 2015

- ・2015年5月12日
- ・オーストラリア ABLS
- ・口径面積:0.38m²
- ・11.5時間@36-37km

GRAINE2018 変更点,準備状況

- ・2018年4月初頭
- ・オーストラリア アリススプリングス
- ・口径面積:0.38m² フライト時間:24~30時間

エマルションフィルム: 銀量の変更、温度耐性改善 **多段シフター:** 有効面積の拡大、タイムスタンプ性能向上 **スターカメラ:** システムの冗長化

与圧容器ゴンドラ: 球から拡張性の高い繭型に変更

									↓ ↓					
	2017/2	3	4	5	6	7	8	9	10	11	12	2018/1	2	3
エマルジョンフィルム			乳剤·ベ-	ース材の手	F配·製造						初)期化処理		
						フィルム	製造		初期化处	理]	ミ空パック		
										フィルム要	超	発送		
多段シフター	フィルム	搭載方法、	オペレー	ションの見	,直し		低温低圧	フィルム	搭載試験	[@] JAXA				
								1	反於詞金、					
スターカメラ	動作確認	、基本コマ	マンド構築	、SSDのフ	て長化		低温低圧	<mark>試験</mark> @J						
								4	又小、口川正、					
与圧容器ゴンドラ	設計を固	フライトモ	デル製作	加圧試験	、強度試	低温試験	R		』 紋 調 敕					
								4	又小ミロ川王、	· <u>►</u> <u></u>				
電池						手配		調達	組み上げ	宝装				
								W J Z Z						
									ゴンドラ	<mark>まかみ合</mark> れ	> <mark>せ@</mark> JAン	KA		
												▶輸出 船	便	現地準備

今

GRAINE2018 変更点,準備状況

- ・2018年4月初頭
- ・オーストラリア アリススプリングス
- ・口径面積:0.38m² フライト時間:24~30時間

エマルションフィルム:銀量の変更、温度耐性改善 多段シフター:有効面積の拡大、タイムスタンプ性能向上 スターカメラ:システムの冗長化

与圧容器ゴンドラ: 球から拡張性の高い繭型に変更

									+					
	2017/2	3	4	5	6	7	8	9	10	11	12	2018/1	2	3
エマルジョンフィルム			乳剤·ベ-	ース材の手	F配·製造							初期化処理		
						フィルム	製造		初期化处	1理		真空パック		
										フィルム要	道			
多段シフター	フィルム	荅載方法、	オペレー	ションの見	,直し		低温低圧	フィルム	搭載試験	[®] JAXA				
								1	反 終調登、					
スターカメラ	動作確認	、基本コマ	マンド構築	、SSDのフ	て長化		低温低圧	<mark>試験</mark> @J						
								4	又形詞進、					
与圧容器ゴンドラ	設計を固	フライトモ	デル製作	加圧試験	、強度試	低温試験	An.		■级田政					
								4	又称初金、	<u>+</u> /				
電池						手配		調達	組み上げ	宇壮				
								前月生	、 小丘 () 上 ()					
									ゴンドラ	<mark>まかみ合</mark> 材	っ せ@ J	AXA		
												→ 輸出 船	便	現地準備

今

GRAINEでのフィルム開発

	GRAINE2011	GRAINE2015		
名称	OPERAフィルム	高感度フィルム		
▲□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	銀:ゼラチン	銀:ゼラチン		
AGDI沿領工具学	=30:70	=55:45		
飛跡検出効率	~80%	~98%		
告儿之生	富士フィルム	名古屋大学		
	2003年終了	2011年~		

GRAINE2018ではさらに

潜像退行特性の改善を目指す

気球実験における回収遅延の影響

観測後、最高気温40°Cの オーストラリアの荒野に 放置される 回収が困難な場所に落下 した場合1週間程度時間が かかる可能性もある

フィルムが高温下に晒されると記録 された飛跡が消えてしまう(潜像退行) Ag4+O2+H2O→4Ag++4OH⁻ 高温&水分量が多いほど促進する フィルムを乾燥させてから密閉パッ クすることで防止する

潜像退行による飛跡の消失

高感度フィルムの潜像退行特性試験(2014年)

銀:ゼラチン比の調整による潜像退行特性の改善

AgBr結晶体積充填率45%の原子核乳剤を使ったフィルムを製造 相対湿度30%にて乾燥し1枚ずつ密閉パック

高速自動飛跡読み取り装置(HTS)

飛跡の自動読み出し

パルスハイト(ph):16層の内のヒットレイヤー数 今回はph>=8の飛跡を出力した 読み取り角度範囲は|tanθx,y|<1.4

飛跡検出効率の求め方

飛跡検出効率 = <u>トリガー&評価フィルムでの接続本数</u> トリガーフィルムでの接続本数

- トリガーフィルム
- 評価フィルム①(40°C、0day)
- 評価フィルム②(40°C、1.5day)
- 評価フィルム③(40°C、3day)

トリガーフィルム

評価フィルム①(40°C、0day)の結果

角度平均飛跡検出効率=0.994

評価フィルム②(40°C、1.5day)の結果

角度平均飛跡検出効率=0.983

評価フィルム③(40°C、3day)の結果

角度平均飛跡検出効率=0.961

高感度フィルム試験(2014年)との比較

高感度フィルムとの見た目の比較

AgBr体積充填率 55%フィルム

AgBr体積充填率

コンバータフィルム変更点

	GRAINE2015	GRAINE2018
AgBr体積充填率	銀:ゼラチン=55:45	銀:ゼラチン=45:55
パック湿度	20%	30%
潜像退行特性 ※日変動考慮	~3日	~6日
塗布厚み(片面)	70µm	75µm
フィルム枚数	100枚×4ユニット	100枚×4ユニット

より割れにくく、潜像退行に強く、 全面一様に検出効率の高いフィルムとなった

2018年実験に向けたフィルム製造を開始

明室での塗布試験の様子

32~40枚/週を製造し ており実験に必要な ~500枚を11月中に 作り終える予定

まとめ

気球搭載型エマルションア線望遠鏡実験GRAINEでは2018年に次期フライトを行うことが決定し、現在は準備を進めているところ

銀量を調整したフィルム(AgBr体積充填率55%→45%)を製造し、 40℃環境での潜像退行特性を調べる試験を行い、大幅な改善が見 られた

•

· GRAINE2018年気球実験に向けてフィルムの量産が始まっており 11月中には必要枚数が完成する予定

春の学会の時はオーストラリアで準備をしている段階なので、実際のフライト結果は来年秋の学会にて

back up

GRAINE2015 シフターオペレーション

姿勢モニター スターカメラ

- ✓2015年気球実験回収後の動作・性能試験
 - 結像性能(0.012deg)、感度(~7等級)を確認
- ✓復旧可能なシステムを構築
 - ・ 電源接続/切り離し、システム起動/シャットダウン、リセット、システム/ストレージのディスク分離、ストレージディスク冗長化
 _{fame rate}

Digital Interface

- ☆**拡張性を持たせた繭型** ☆フレームの軽量化 ☆膜材料の新規開発 (強度、温度特性の向上)
- ☆長時間フライトに向けて 環境性能を向上

気密性の確認

今後の予定

- 9月下旬 望遠鏡、スターカメラの マウント確認
 - 10月上旬 低温環境での気密性の確認 @宇宙研
 - 11月 望遠鏡、スターカメラの アライメント測定/保証
 - 年明け オーストラリアへ輸出

方位角:150.444度±0.002度 (=0.03mrad) 仰角:47.799度±0.001度 (=0.02mrad)

	Fermi-LAT	GRAINE	eASTROGAM	ComPair	HARPO
Converter & Tracker	W (0.03/0.18Xo) & SSD	Emulsion	両面読みSSD	両面読みSSD	ガスTPC
Energy Range	20 MeV – 300 GeV	10 MeV – 100 GeV	10 MeV – 3 GeV (pair)	10 MeV – 0.5 GeV(pair)	MeV – GeV
角度分解能 @100MeV	6.0°	1.0°	1.5° (requirement)	1.5°	0.4°
角度分解能 @1GeV	0.9°	0.1°	0.2° (requirement)		
偏光感度		有り			有り
有感面積	1.96m² (有効面 積0.25m ² @100MeV)	10m² (有効面積 2.1m ² @100MeV)	0.9m ²	0.9m ²	未定 (有効面積 0.03m ² w/ 10kg Ar)
観測開始	2008	2021	未定(早くて2029)	未定	未定
打ち上げ	NASA	JAXA (気球)	ESA?	NASA?	未定

原子核乾板技術でのみ実現可能

銀河中心領域におけるカタログソースの変遷

Figure 7. Point sources for 3FGL (left panel) and 1FIG (right panel, for Pulsars intensity-scaled IEM) overlaid on the total counts for the $15^{\circ} \times 15^{\circ}$ region about the GC. Left panel symbol key: filled squares, "flagged" 3FGL sources; filled triangles, other 3FGL sources; upright crosses, 3FGL sources with a multi-wavelength association. Right panel symbol key: filled circles, 1FIG sources with $TS \ge 25$; angled crosses, 1FIG source candidates with TS < 25; upright crosses, as in left panel. Color scale is in counts per 0.05° degree pixel.

FERMI-LAT OBSERVATIONS OF HIGH-ENERGY γ -RAY EMISSION TOWARD THE GALACTIC CENTER, M. Ajello et al., ApJ 819 (2016)

- カタログごとにガンマ線源が変遷
- 銀河面放射モデルに依存
- 高角度分解能によって、モデルに依存しない
 ガンマ線源の直接検出が可能

41

銀河中心検出感度

陽子加速の直接証拠 ^{超新星残骸}

200MeV以下での系統誤差を抑えた スペクトル測定 200MeV以上での空間構造の解明

ベーストラック

潜像退行(フェーディング)

ph分布のS/N比

現像までの日数(@40°C)

AgBr体積充填率とフォグ増加の相関

フィルム毎の検出効率

