CTA計画で導入されるFlywheelを用いた 大電力供給装置の開発状況

久門拓 M1 宇宙線研究所(ICRR) 手嶋研究室 16/0ct./2017

takumon@icrr.u-tokyo.ac.jp

Topic

High energy gamma-ray astrophysics √Gamma ray burst (GRB) Cherenkov Telescope Array (CTA) Content Content (CTA) Content Content Cont VUPS & Flywheel ✓ Flywheel Performance Test @Switzerland

Introduction

High Energy Gamma-ray astrophysics

Taku Kumon

High Energy Gamma-ray astrophysics

- Astrophysics in developing energy field
 - Fewer event rate, but...
 - > Dynamic phenomena
 - > Explosive phenomena

Taku Kumon

Transient -> "Gamma rage" Burst"

s GeV)⁻¹

Gamma Ray Burst (GRB)

Short GRB NEUTRON STARS **Scenario** BLACK HOLE DISK CENTRAL ENGINE Long GRB MASSIVE STAR **Scenario** 20s LongGRB

1000

100

10

shiwa • 16 October 2017

Fermi Gamma-ray Space Telescope

Fermi since 2008 > In the space > LAT (Large Area Telescope) 20MeV to 300GeV > GBM (Gamma-ray Burst Monitor) 8keV to 30MeV Small GBR statistics above Gev

Imaging Atmospheric Cherenkov Telescope (IACT)

IACT > On the ground > Larger detection area Never detect > Using Cherenkov light

Taku Kumon

Cherenkov Telescope Array (CTA)

CTA > The next generation of IACT > 32 countries > 2 sites (North/South) First light: 2018 (North) >LST, MST, SST

Large size telescope (LST)

- LST 20Gev to 1Tev gamma-ray
 - > 23m diameter (paraboloid)
 - \succ Field of View = 4.5°
 - > Threshold > 20GeV
 - > ×10,000 more sensitive than Fermi in GRB

-> <u>Aim for first detection of GRB on the ground</u>

秋の研究会 (YMAP)・Kashiwa・16 October 2017

12

Detect GRB on the ground for the first time

> Within 20 seconds !!

Taku Kumon

Peak energy supply UPS & Flywheel

秋の研究会 (YMAP)・Kashiwa・16 October 2017

Taku Kumon

Fast Rotation for GRB

Peak energy supply system

Cta

telescope array

- Charge up with weak current
- Fast Rotation mode
 - After GRB alert comes
 - Huge current flows

Taku Kumon

UPS & Flywheel for 1 LST

Taku Kumon

Uninterruptible Power System (UPS)

UPS (TLE 600kVA)

- > In interruption of electric service....
- 1. Power is transferred from Batteries <- Flywheel

Constant Voltage & Frequency

Flywheel

Mechanical Baltery Flywheel (VDC XE) > Energy is stored as "Rotational energy" > Vacuum & Magnetic levitation > 99.4% efficient Rotor > 20 year life Permanent Magnet

Advantage of flywheel

- Comparing with <u>chemical</u> battery
 - > Smaller footprint
 - > No hazardous materials
 - > Higher efficiency
 - > Fewer maintenance
 - > Longer life
 - 20-year life is the same as CTA Operation period

Permanent magnet motor

Active magnetic bearings

Higher efficiency **Zero** bearing maintenance 20-year life span

Flywheel installation in CTA

- No Flywheel is installed on telescopes ever
 - This is the first project in the world !!!
- This installation will be useful for
 - > Remote location
 - > Cases required long life time & huge power ocasionally

Taku Kumon

Flywheel Performance Test September / 2017 Riazzino, Switzerland

Set up

Steady state load: 22kW \checkmark **Rectifier limited: 46kW** \checkmark

5 case studies

Case 1 Realistic GRB case

1. Realistic case

Realistic case of GRB

- ✓ Discharge for 10 seconds
- Measure the level of charge of the flywheels at the end of the 10 seconds \checkmark
- ✓ Measure the time to fully recharge the flywheels at 100% capability

Result

- Flywheels level of charge: 100% -> 40%
- Time to fully recharge the flywheels (40% -> 100%) : about 15 minutes

~400kW DC Flywheel

1. Realistic case

Input/ Output power

- Input: $65.7A \times 400V \times \sqrt{3} = 45.5kW$
- Output: 688.8 A × 400V × $\sqrt{3}$ = 477kW

-> UPS & Flywheel can transfer enough power for GRB

-> Flywheels can leave 40% of the energy storage after fast rotation

Result:						
Ch Ch Ch Ch	1 2 3 4	UDC linput lout Vout	= = =			
Ch Ch Ch Ch Ch	1 2 3 4 ansi	UDC linput lout Vout on of th	= = = = e abo			

Case 2 Fully discharged case

Taku Kumon

2. Fully discharged case

Problem

> To recover the system, we have to raising the breaker by hand

We try NOT to drop breaker

Resu	lt		
Ch	1	UDC	100
Ch	2	linput	200
Ch	3	lout	500
Ch	4	Vout	500

Case 3. Another GRB some min. after one GRB

Taku Kumon

3. Another GRB some min. after one GRB

Two GRBs occurs almost at the same time

- Discharge for 10 seconds
- Let flywheels charge for 5 minutes
- Discharge for 10 seconds again

Result

- First discharge: 100% -> 40%
- 5-minute charge: 40% -> 62%
- Second discharge: 62% -> 7%

3. Another GRB some min. after one GRB

Two GRBs occurs almost at the same time

-> Enable to detect another GRB which happens after some minutes

-> The minimum energy percentage of fast rotation mode should be determined

case 4 Input power shortage

秋の研究会 (YMAP)・Kashiwa・16 October 2017

Taku Kumon

4. Input power shortage

- Case that input power is not enough
 - ✓ Rectifier limited: 46kW -> 26kW
- Result

- > Charging: Failure -> loss energy
- > But UPS & Flywheels don't tell their situations

> Alerts of charging failure is required

Case 5 One of Flywheels gets broken

5. One of Flywheels gets broken

- Use the only one flywheel left
 - Load: 500kW -> 200kW \checkmark
 - ✓ Measure the time to fully discharge
- Result
 - > Flywheels take about 18 seconds to fully discharge

>"Semi-fast" rotation with one flywheel can be executed

✓ UPS & Flywheels are being shipped to La Palma

Integration Test w/ Motor Drive System will be done until 2018 Spring ✓2018 First Light

Taku Kumon

UPS & Flywheel -> Peak energy supply system LST w/ UPS & Flywheel can detect GRB > For the first time on the ground Performance test in Sep./2017 > Transfer enough power & leave enough energy strage > Enable to detect two GRBs which happen almost at the same time Integration test until 2018 spring

Thank you !

