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宇宙の大規模構造
宇宙論的スケールにわたって存在する質量分布の非一様性

•質量分布の大半は冷たい暗黒物質（Cold Dark Matter, CDM）

メガパーセク(Mpc) ～ギガパーセク(Gpc)

※ 1 Mpc＝10^6 pc ~300万光年

•原始密度ゆらぎを種に、宇宙膨張の影響下で
重力不安定性により構造が発達・進化

（→宇宙論の情報を豊富に含む）

銀河赤方偏移サーベイによる銀河の３次元地図をもとに研究
が進められている（最近は重力レンズ観測などもある）

標準的シナリオでは



銀河赤方偏移サーベイ

スローンデジタル
スカイサーベイ 

(ニューメキシコ)

すばる望遠鏡 

(ハワイ)

8.2m2.5m 光学望遠鏡で銀河１個１個
を分光（スペクトル）観測
→ 銀河の赤方偏移 z を決定

SDSS SkyServer

遠方銀河 Ca,H&K OIII Hβ Na Mg 

波長

z = ��/�

（奥行きの ‘距離’ 指標に）

～ 大規模構造を探る窓 ～



銀河分布の３次元地図

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-1-2-million-galaxies-to-study-the-properties-of-dark-energy/

120,000 galaxies
赤方偏移
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Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

C⃝ 2012 The Authors, MNRAS 427, 3435–3467
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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•原始密度ゆらぎの性質
•宇宙のエネルギー組成・宇宙膨張のパラ

メーター

ダークエネルギーの状態方程式
ニュートリノ質量和の制限

インフレーションモデルの制限

宇宙論スケールでの重力テスト

CMBだけ
からは得
られない



宇宙論観測の世界的競争

LSST (2022+)

eBOSS
(2014~)

BOSS
(~2014)

DESI 
(2018+)

SuMIRe

HETDEX 
(2017~)

WFIRST 
(2024+)

EUCLID 
(2020)

FastSound 
(2012~2014)

Hyper-Suprime Cam (2014~)
Prime Focus Spectrograph (2018~)

DES (2013~)

すばる望遠鏡による宇宙論観測

望遠鏡を占有化し、これまで以上に深く広域にサーベイを行う



精密宇宙論研究の暗雲
大規模観測により観測データの統計精度は飛躍的に向上7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

7
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b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
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tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33

Tegmark et al. (’06) Anderson et al. (’12)

~1% precision
P(

k)
 [

(M
pc

/h
)^

3]

P(
k)

 [
(M

pc
/h

)^
3]

k [h/Mpc]k [h/Mpc]

2.6� 105 galaxies5.8� 104 galaxies
107 � 109 galaxies

観測・理論双方の系統誤差が結論に影響を与える可能性

質のよい統計データで新しい宇宙論が拓ける可能性
その一方、

（その影響を考慮すべき、理論テンプレートに取り込むべき）

（波数）

Ve� = 2.2 Gpc3Ve� � 0.7 Gpc3 Ve� � 10 Gpc3



１０年前までは、

(Tegmark et al.’06)

For systematics testing and numerical purposes, we also
analyze a variety of subvolumes in the LRG sample. We
split the sample into three radial slices, labeled NEAR
(0:155< z< 0:300), MID (0:300< z < 0:380), and FAR
(0:380< z< 0:474), containing roughly equal numbers of
galaxies, as illustrated in Fig. 2. Their galaxy-weighted
mean redshifts are 0.235, 0.342, and 0.421, respectively.
We also split the sample into the seven angular regions
illustrated in Fig. 3, each again containing roughly the
same number of galaxies.

It is worth emphasizing that the LRGs constitute a
remarkably clean and uniform galaxy sample, containing
the same type of galaxy (luminous early-types) at all red-
shifts. Not only is it nearly complete ( !n!r̂" # 1 as men-
tioned above), but it is close to volume-limited for
z & 0:38 [36,49], i.e., for our NEAR and MID slices.

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numerical
improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step is
to adjust the galaxy redshifts slightly to compress so-called
fingers-of-god (FOGs), virialized galaxy clusters that ap-
pear elongated along the line-of-sight in redshift space; we
do this with several different thresholds and return to how
this affects the results in Sec. IV F 2. The LRGs are not just
brightest cluster galaxies; about 20% of them appear to
reside in a dark matter halo with one or more other LRG’s.
The second step is to expand the three-dimensional galaxy
density field in N three-dimensional functions termed
PKL-eigenmodes, whose variance and covariance retain
essentially all the information about the k < 0:2h=Mpc
power spectrum from the galaxy catalog. We use N $
42 000 modes for the LRG sample and 4000 modes for
the main sample, reflecting their very different effective
volumes. The third step is estimating the power spectrum
from quadratic combinations of these PKL mode coeffi-
cients by a matrix-based process analogous to the standard

procedure for measuring CMB power spectra from pixel-
ized CMB maps. The second and third steps are mathe-
matically straightforward but, as mentioned, numerically
demanding for large N.

A. Basic results

The measured real-space power spectra are shown in
Fig. 4 for the LRG and MAIN samples and are listed in
Table I. When interpreting them, two points should be
borne in mind:

(1) The data points (a.k.a. band power measurements)
probe a weighted average of the true power spec-
trum P!k" defined by the window functions shown in
Fig. 5. Each point is plotted at the median k-value of
its window with a horizontal bar ranging from the
20th to the 80th percentile.

(2) The errors on the points, indicated by the vertical
bars, are uncorrelated, even though the horizontal
bars overlap. Other power spectrum estimation
methods (see Appendix A 1) effectively produce a
smoothed version of what we are plotting, with error
bars that are smaller but highly correlated.

Our Fourier convention is such that the dimensionless
power "2 of [77] is given by "2!k" $ 4!!k=2!"3P!k".

 

FIG. 3 (color online). The angular distribution of our LRGs is
shown in Hammer-Aitoff projection in celestial coordinates,
with the seven colors/greys indicating the seven angular sub-
samples that we analyze.

 

FIG. 4 (color online). Measured power spectra for the full
LRG and main galaxy samples. Errors are uncorrelated and
full window functions are shown in Fig. 5. The solid curves
correspond to the linear-theory #CDM fits to WMAP3 alone
from Table 5 of [7], normalized to galaxy bias b $ 1:9 (top) and
b $ 1:1 (bottom) relative to the z $ 0 matter power. The dashed
curves include the nonlinear correction of [29] for A $ 1:4, with
Qnl $ 30 for the LRGs and Qnl $ 4:6 for the main galaxies; see
Eq. (4). The onset of nonlinear corrections is clearly visible for
k * 0:09h=Mpc (vertical line).

COSMOLOGICAL CONSTRAINTS FROM . . . PHYSICAL REVIEW D 74, 123507 (2006)

123507-5

宇宙論パラメーターの解析に
用いられた理論テンプレート

z=0.35

線形理論
変てこ理論
テンプレート

引用件数 1,000以上

SDSS LRG

SDSS Main

これからの精密観測では許されない

線形理論

eral reasons for this that have been extensively studied in
the literature:

(1) Nonlinear evolution alters the broad shape of the
matter power spectrum on small scales.

(2) Nonlinear evolution washes out baryon wiggles on
small scales.

(3) The power spectrum of the dark matter halos in
which the galaxies reside differs from that of the
underlying matter power spectrum in both ampli-
tude and shape, causing bias.

(4) Multiple galaxies can share the same dark matter
halo, enhancing small-scale bias.

We fit these complications using a model involving the
three ‘‘nuisance parameters’’ !b;Qnl; k"# as illustrated in
Fig. 9. Following [29,88], we model our measured galaxy
power spectrum as

 Pg!k# $ Pdewiggled!k#b2 1%Qnlk2

1% 1:4k
; (4)

where the first factor on the right hand side accounts for the
nonlinear suppression of baryon wiggles and the last factor
accounts for a combination of the nonlinear change of the
global matter power spectrum shape and scale-dependent
bias of the galaxies relative to the dark matter. For
Pdewiggled!k# we adopt the prescription [88]

 Pdewiggled!k# $ W!k#P!k# % &1'W!k#(Pnowiggle!k#; (5)

where W!k# ) e'!k=k"#
2=2 and Pnowiggle!k# denotes the ‘‘no

wiggle’’ power spectrum defined in [89] and illustrated in
Fig. 9. In other words, Pdewiggled!k# is simply a weighted
average of the linear power spectrum and the wiggle-free

 

FIG. 7 (color online). Same as Fig. 4, but multiplied by k and
plotted with a linear vertical axis to more clearly illustrate
departures from a simple power law.

 

FIG. 9 (color online). Power spectrum modeling. The best-fit
WMAP3 model from Table 5 of [7] is shown with a linear bias
b $ 1:89 (dotted curve), after applying the nonlinear bias cor-
rection with Q $ 31 (the more wiggly solid curve), and after
also applying the wiggle suppression of [88] (the less wiggly
solid curve), which has no effect on very large scales and
asymptotes to the ‘‘no wiggle’’ spectrum of [89] (dashed curve)
on very small scales. The data points are the LRG measurements
from Fig. 7.

 

FIG. 8 (color online). Constraints on the redshift-space dis-
tortion parameters ! and rgv. The contours show the 1, 2, and 3"
constraints from the observed LRG clustering anisotropy, with
the circular dot indicating the best-fit values. The diamond shows
the completely independent !-estimate inferred from our analy-
sis of the WMAP3 and LRG power spectra (it puts no constraints
on rgv, but has been plotted at rgv $ 1).
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matter power spectrum on small scales.

(2) Nonlinear evolution washes out baryon wiggles on
small scales.

(3) The power spectrum of the dark matter halos in
which the galaxies reside differs from that of the
underlying matter power spectrum in both ampli-
tude and shape, causing bias.

(4) Multiple galaxies can share the same dark matter
halo, enhancing small-scale bias.

We fit these complications using a model involving the
three ‘‘nuisance parameters’’ !b;Qnl; k"# as illustrated in
Fig. 9. Following [29,88], we model our measured galaxy
power spectrum as

 Pg!k# $ Pdewiggled!k#b2 1%Qnlk2

1% 1:4k
; (4)

where the first factor on the right hand side accounts for the
nonlinear suppression of baryon wiggles and the last factor
accounts for a combination of the nonlinear change of the
global matter power spectrum shape and scale-dependent
bias of the galaxies relative to the dark matter. For
Pdewiggled!k# we adopt the prescription [88]

 Pdewiggled!k# $ W!k#P!k# % &1'W!k#(Pnowiggle!k#; (5)

where W!k# ) e'!k=k"#
2=2 and Pnowiggle!k# denotes the ‘‘no

wiggle’’ power spectrum defined in [89] and illustrated in
Fig. 9. In other words, Pdewiggled!k# is simply a weighted
average of the linear power spectrum and the wiggle-free

 

FIG. 7 (color online). Same as Fig. 4, but multiplied by k and
plotted with a linear vertical axis to more clearly illustrate
departures from a simple power law.

 

FIG. 9 (color online). Power spectrum modeling. The best-fit
WMAP3 model from Table 5 of [7] is shown with a linear bias
b $ 1:89 (dotted curve), after applying the nonlinear bias cor-
rection with Q $ 31 (the more wiggly solid curve), and after
also applying the wiggle suppression of [88] (the less wiggly
solid curve), which has no effect on very large scales and
asymptotes to the ‘‘no wiggle’’ spectrum of [89] (dashed curve)
on very small scales. The data points are the LRG measurements
from Fig. 7.

 

FIG. 8 (color online). Constraints on the redshift-space dis-
tortion parameters ! and rgv. The contours show the 1, 2, and 3"
constraints from the observed LRG clustering anisotropy, with
the circular dot indicating the best-fit values. The diamond shows
the completely independent !-estimate inferred from our analy-
sis of the WMAP3 and LRG power spectra (it puts no constraints
on rgv, but has been plotted at rgv $ 1).
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II. SOLVING PERTURBATION THEORY KERNELS NUMERICALLY

To solve Eqs. (6) and (7), we expand the quantities δ and θ as

δ(k; t) = δ(1)(k; t) + δ(2)(k; t) + · · · , θ(k; t) = θ(1)(k; t) + θ(2)(k; t) + · · · , (8)

Since we are particularly interested in the late-time evolution dominated by the growing mode2, the solutions for
perturbations are expressed as

δ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Fn(k1, · · · , kn; t) δ0(k1) · · · δ0(kn),

θ(n)(k; t) =
∫

d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn; t) δ0(k1) · · · δ0(kn), (9)

where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)

L̂(k) ≡

⎛

⎜⎜⎜⎜⎝

a
d

da
1

3
2

(
H0

H(a)

)2 Ωm,0

a3
−

(
csk

aH

)2

a
d

da
+

{
2 +

Ḣ

H2
+

(
cvk

aH

)2
}

⎞

⎟⎟⎟⎟⎠
, (10)

the evolution equations for the kernels Fn and Gn are written as

L̂(k1···n)

⎛

⎝
Fn(k1, · · · ,kn; a)

Gn(k1, · · · , kn; a)

⎞

⎠ =

⎛

⎝
Sn(k1, · · · , kn; a)

Tn(k1, · · · ,kn; a)

⎞

⎠ . (11)

The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (7), and we will
summarize below up to the third order:

A. Source functions

Linear order

S1(k; a) = 0,

T1(k; a) = 0 (12)

Second order

S2(k1, k2; a) = −1
2

{
α(k1, k2)G1(k1)F1(k2) + α(k2, k1)G1(k2)F1(k1)

}
,

T2(k1, k2; a) = −1
2
β(k1, k2) G1(k1)G1(k2) (13)

The source functions given above are symmetric with respect to the exchange of arguments, i.e., S2(k1, k2) =
S2(k2, k1), T2(k1, k2) = T2(k2, k1). Thus, numerically solving Eq. (11), we obtain the symmetrized PT kernel
for F2 and G2.

2 In the presence of effective stress tensor, the late-time evolution may not necessarily be dominated by the growing mode, however, we
here consider the case that the EFTofLSS corrections are small.
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P (k; t) = P11(k; t) + P22(k; t) + P13(k; t) + · · ·

4.3. (EULERIAN) PERTURBATION THEORY 35

P0(k), and any statistical quantity is constructed with P0. We have

⟨δ0(k)⟩ = 0, (4.49)

⟨δ0(k1)δ0(k2)⟩ = (2π)3 δD(k12)P0(k) (4.50)

⟨δ0(k1)δ0(k2)δ0(k3)⟩ = 0, (4.51)

⟨δ0(k1)δ0(k2)δ0(k3)δ0(k4)⟩ = (2π)6
[
δD(k12)δD(k34)P0(k1)P0(k2) + (cyclic perm.)

]
,

(4.52)
...

In general, for positive integer n,

⟨δ0(k1) · · · δ0(k2n+1)⟩ = 0, (4.53)

⟨δ0(k1) · · · δ0(k2n)⟩ =
∑

all pair associations p

∏

pairs (i,j)

⟨δ0(ki)δ0(kj)⟩. (4.54)

These properties are known as Wick’s theorem or Isserlis’ theorem.

Statistical calculations

• Power spectrum : ⟨δ(k1)δ(k2)⟩ = (2π)3δD(k12)P (k1)

An explicit calculation of the ensemble average at next-to-leading order (called one-
loop) leads to

⟨δ(k1)δ(k2)⟩ ≃ ⟨δ1(k1)δ1(k2)⟩+ ⟨δ2(k1)δ2(k2)⟩+ ⟨δ1(k1)δ3(k2)⟩+ ⟨δ3(k1)δ1(k2)⟩+ · · · .
(4.55)

We thus obtain

P (k, a) ≃ {D1(a)}2 P0(k) + {D1(a)}4
{
P22(k) + P13(k)

}
. (4.56)

The first term at RHS is nothing but the linear power spectrum. The parenthesis
represents the contributions from the higher-order PT, given by

P22(k) = 2

∫
d3p

(2π)3
{F2(k − p,p)}2 P0(|k − p|)P0(p), (4.57)

P13(k) = 6P0(k)

∫
d3p

(2π)3
{F3(k,p,−p)}2 P0(p). (4.58)

Because of the different dependence on the linear growth factor, these nonlinear
contributions give rise to the scale-dependent growth of power spectrum.

• Bispectrum : ⟨δ(k1)δ(k2)δ(k3)⟩ = (2π)3 δD(k123)B(k1,k2,k3)

At leading-order, we have

⟨δ(k1)δ(k2)δ(k3)⟩ ≃ ⟨δ1(k1)δ1(k2)δ2(k3)⟩+ ⟨δ2(k1)δ1(k2)δ1(k3)⟩
+ ⟨δ1(k1)δ2(k2)δ1(k3)⟩+ · · · . (4.59)

P11(|k � p|; t)P11(p; t)P22(k; t)
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P13(k; t) = 6P11(k; t) P11(p; t)

Fn(k1, · · · ,kn) �
(1)(k1; t) · · · �(1)(kn; t)

線形オーダー 高次補正（1ループ補正）

ループ補正項は
多次元積分を含む
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Nonlinear eflects of self-gravitating systems in cosmology are considered on the basis of perturbation
theory. In particular, we examine several cases in which evolution of the power spectrum of density fluc-
tuations can be analytically calculated. In some cases, nonlinearity suppresses the growth of fluctuations
relative to linear theory, and the power transfer via nonlinear mode coupling is sensitive to the specific
shape of the underlying fluctuation spectrum. The result is in good agreement with recent numerical
simulations.
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effect, artificial two-body relaxation, and so on. Hence,
it is of great value to check the numerical simulation and
its validity by other analytical methods. In this paper,
we present a quasinonlinear perturbation analysis, fol-
lowing the formalism developed by Juszkiewicz and
Vishniac, to see the weakly nonlinear effect on the
cosmological density fluctuations. We found that the
higher-order perturbations can be analytically integrated
for power-law-type spectra of density fluctuations. The
results clearly illustrate the role of primordial spectrum
shape on the subsequent nonlinear evolution of cosmo-
logical gravitating systems, as suggested by the earlier
numerical works. '
Expand the density fluctuations as a perturbation

series:

P(k, t) =Pt t (k)(t/I; )4"+ [Pp2(k)+P~3(k)](t/t;) s"+
After a lengthy, but straightforward calculation, we found that Eq. (15) in Ref. 4 can be written as

3 f oo 3 +7 —10P22(k ) = P t t (kr) dr dx P ~ t [K(1+r —2rx ) 'I']98(2tr) & o " —~ (1+r —2rx)
(2)

4 3 2 3 2 1+rP„(k)= drPtt(kr) —158+100r —42r + (r —1) (7r +2)ln252(2tr)2 "o r2 3 1 —r

The dynamics of self-gravitating systems is of funda-
mental importance in astrophysics. In particular, non-
linear growth of cosmological density Auctuations is the
first and main physical process in the formation and evo-
lution of the large-scale structure in the Universe. If the
present cosmic structure originated from quantum fluc-
tuations in the inAationary epoch, their statistical proper-
ties are fairly well specified: random Gaussian density
field with scale-invariant power spectrum [P(k) ~k].
Although linear theory quantitatively describes the sub-
sequent evolution of Auctuations, there is no established
method to follow their nonlinear evolution. Convention-
ally, N-body simulations have been employed to explore
the nonlinear evolution of the cosmic structure. In this
numerical approach, Suto' and later Suginohara et al.
found that the nonlinear growth rate sensitively depends
on the overall shape of the Auctuation spectrum. It is &(k, t)—=8)(k, t)+&z(k, t)+&3(k, t)+
not clear, however, to what extent the simulations faith-
fully describe the actual large-scale structure formation where the expressions for the above perturbations can be
in the Universe, owing to the possible discretization

~

found in Ref. 4. To second order, the spectrum reduces
to

~6'(k, t)
~

= ~Bt(k, t) ~
+2Re[8~*(k,t)82(k, t) l+ ~Bq(k, t) ~

+2Re[8~*(k, t)63(k, t)1+
The linear perturbation 6'~ is assumed to be given by a random Gaussian field. For simplicity, we consider the
Einstein-de Sitter model. Then the second term in Eq. (1) vanishes after taking the ensemble average, and the power
spectrum of density fluctuations in weakly nonlinear regime reduces to

The above result is quite general in the sense that we do not make any particular assumption on the way of nonlinear
power transfer, except that the higher-order terms are negligible.
First, consider the power-law fluctuation spectrum with a cutoff' at large wave number:

A(k/k, )", for 0 &k &k, ,
() for k)k (3)

In this case, expressions (2) can be analytically integrated. Since we are mainly interested in the weakly nonlinear re-
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Equations of self-gravitating systems in the Universe are solved by expanding as perturbation series in
Fourier space. The formulas for the higher-order terms are given for density and velocity fields. We ap-
ply the formulas to several analytically integrable models whose linear density power spectra obey a sin-
gle power law, and asymptotically approach the prediction of the cold-dark-matter scenario. We explic-
itly give the nonlinear gravitational evolution for the fields and its dependence on the initial spectrum.
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I. INTRODUCTION

Gravitation is definitely the simplest and nevertheless
most fundamental source responsible for generating com-
plexity and diversity in astrophysical structures. In par-
ticular, the standard theory of structure formation in the
universe, the gravitational instability picture, cannot be
completed without the proper understanding of the phys-
ics of nonlinear self-gravitating systems. The linear
theory of the gravitational instability picture has been ex-
tensively worked out and has reached a satisfactory level
(e.g., Refs. [1]and [2]). On the other hand, the nonlinear
theory of gravitational evolution is far from complete.
Of course, this is not without reason; gravitational evo-

lution in cosmology is intrinsically a fully three-
dimensional phenomenon and involves a literally astro-
nomical number of degrees of freedom. %'ith the strong
nonlinearity inherent to the gravitational interaction,
these make any general assessment of the problem practi-
cally impossible. A recent breakthrough was brought
about by the rapid progress in computational resources.
The currently available supercomputers enable one to in-
vestigate numerically the fully nonlinear gravitational
evolution in fairly realistic conditions (e.g., Refs. [3-7]).
On the other hand, it is usually not so easy, if not impos-
sible, to elucidate the underlying physics from a limited
number of numerical experiments which can cover a tiny
fraction of the realistic parameter space. In this respect
analytical results, including the spherical infall model,
the stable clustering solutions, and the Zel'dovich solu-
tion (e.g., Ref. [1]},play complementary roles in the fur-
ther understanding of gravitational physics, even if they
are applicable only to a quite restrictive situation. In this
paper we aim at presenting another complementary ap-
proach to the nonlinear gravitational clustering. Our
analysis is based on the higher-order perturbative formal-

ism developed by Juszkiewicz [8], and then by Vishniac
[9] and Juszkiewicz, Sonoda, and Barrow [10]. Extending
the work by Suto and Saski [11],who found analytically
tractable models within the above formalism, we will give
a detailed description of the second-order nonlinear evo-
lution of a gravitating cosmological fluid.

II. FORMALISM AND DERIVATION
OF THE SECOND-ORDER PERTURBATIONS

A. Basic formalism

Throughout the present analysis, we adopt a matter-
dominated, spatially flat universe, i.e., the Einstein-de
Sitter model, for simplicity. Since the characteristic scale
in which we are interested corresponds to that of the
large-scale structure in the present day, we focus our at-
tention on the gravitational evolution of structure in
subhorizon scales. Then the gravitating system is de-
scribed by the Newtonian equations

—5(x, t)+—V [v(x, t)[1+5(x,t)]]=0,1

a (2.1a)

t} 1 a—v(x, t }+—[v(x, t }V]v(x, t ) + v(x, t)—Bt ' a a

V tp(x, t)=4trGa po(t)5(x, t)
2

3 a a 5(x, t) .2 a

+ Vtp(x, t }=0—,1

a (2.1b)

(2.1c)

In the above expressions, x is the comoving coordinate,
5(x, t) is the density contrast, v(x, t)=ax is the peculiar
velocity, q&(x, t) is the peculiar gravitational potential,
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バリオン音響振動 (BAO)

• 宇宙晴れ上がり前のバリオン-光子流体の痕跡
(⇔ 宇宙マイクロ波背景放射の音響振動)

• 振動スケール は「標準ものさし」になる
→ 遠方宇宙の宇宙膨張診断（加速膨張の起源に迫る手がかり）

(Baryon Acoustic Oscillations)
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Figure 3. BAO signals in the measured post-reconstruction power spectrum (left panels) and correlation function (right panels) and predictions of the best-fit
BAO models (curves). To isolate the BAO in the monopole (top panels), predictions of a smooth model with the best-fit cosmological parameters but no BAO
feature have been subtracted, and the same smooth model has been divided out in the power spectrum panel. For clarity, vertical offsets of ±0.15 (power
spectrum) and ±0.004 (correlation function) have been added to the points and curves for the high- and low-redshift bins, while the intermediate redshift
bin is unshifted. For the quadrupole (middle panels), we subtract the quadrupole of the smooth model power spectrum, and for the correlation function we
subtract the quadrupole of a model that has the same parameters as the best-fit but with ✏ = 0. If reconstruction were perfect and the fiducial model were
exactly correct, the curves and points in these panels would be flat; oscillations in the model curves indicate best-fit ✏ 6= 0. The bottom panels show the
measurements for the 0.4 < z < 0.6 redshift bin decomposed into the component of the separations transverse to and along the line of sight, based on
x(p, µ) = x0(p) + L2(µ)x2(p), where x represents either s2 multiplied by the correlation function or the BAO component power spectrum displayed in the
upper panels, p represents either the separation or the Fourier mode, L2 is the 2nd order Legendre polynomial, p|| = µp, and p? =

p
p2 � µ2p2.
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Fig. 2.— (Top) Dimensionless power spectrum, ∆2(k). The
solid and dashed lines show perturbation theory calculations and
N-body simulations, respectively. The dotted lines show the pre-
dictions from halo approach (Smith et al. 2003). The dot-dashed
lines show the linear power spectrum. (Bottom) Residuals. The
errorbars show the N-body data divided by the perturbation the-
ory predictions minus one, while the solid curves show the halo
model calculations given in (Smith et al. 2003) divided by the per-
turbation theory predictions minus one. The perturbation theory
predictions agree with simulations to better than 1% accuracy for
∆2(k) ! 0.4.

the Zel’dovich approximation (Crocce et al. 2006). The
initial redshifts are zinitial = 27, 34, 42, and 50 for 512,
256, 128, and 64 h−1 Mpc simulations, respectively. In
Appendix A we show more on the convergence test (see
Fig. A1).

4. RESULTS

Figure 1 compares P (k, z) at z = 1, 2, 3, 4, 5 and 6
(from top to bottom) from simulations (dashed lines), PT
(solid lines), and linear theory (dot-dashed lines). The
PT predictions agree with simulations so well that it is
actually difficult to see the difference between PT and
simulations in Figure 1. The simulations are significantly
above the linear theory predictions at high k.

To facilitate the comparison better, we show ∆2(k, z)
[Eq. (2)] in Figure 2. We find that the PT predictions
(thin solid lines) agree with simulations (thick solid lines)
to better than 1% accuracy for ∆2(k, z) ! 0.4. On the
other hand, the latest predictions from halo approach

Fig. 3.— Non-linearity in baryonic acoustic oscillations. All
of the power spectra have been divided by a smooth power
spectrum without baryonic oscillations from equation (29) of
(Eisenstein & Hu 1998). The errorbars show N-body simulations,
while the solid lines show perturbation theory calculations. The
dot-dashed lines show the linear theory predictions. Perturbation
theory describes non-linear distortion on baryonic oscillations very
accurately at z > 1. Note that different redshift bins are not inde-
pendent, as they have grown from the same initial conditions. The
N-body data at k < 0.24 and k > 0.24 h Mpc−1 are from 512 and
256 h−1 Mpc box simulations, respectively.

(Smith et al. 2003) (dotted lines) perform significantly
worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ≃ 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
fect by either using a smaller box-size or a better initial
condition from the second-order Lagrangian perturba-
tion theory (Crocce et al. 2006). As the power spectrum
at k > 0.24 h Mpc−1 from 256 h−1 Mpc simulations at
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worse then PT. This result suggests that one must use PT
to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum
provide a powerful tool to constrain the equation of state
of dark energy. This method uses the fact that the CMB
angular power spectrum sets the physical acoustic scale,
and thus the features in the matter power spectrum seen
on the sky and in redshift space may be used as the stan-
dard ruler, giving us the angular diameter distance out to
the galaxy distribution at a given survey redshift as well
as H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003;
Seo & Eisenstein 2003; Blake & Glazebrook 2003). In
order for this method to be viable, however, it is cru-
cial to understand distortion on the baryonic acoustic
oscillations caused by non-linearity. This has been inves-
tigated so far mostly using direct numerical simulations
(Meiksin et al. 1999; Springel et al. 2005; White 2005;
Seo & Eisenstein 2005). (Meiksin et al. 1999) also com-
pared the PT prediction with their N -body simulations
at z = 0, finding that PT was a poor fit. This is be-
cause non-linearity at z = 0 is too strong to model by
PT. Figure 3 shows that PT provides an accurate an-
alytical account of non-linear distortion at z > 1: even
at z = 1, the third peak at k ≃ 0.18 h Mpc−1 is mod-
eled at a few percent level. At z > 2, all the oscilla-
tory features are modeled to better than 1% accuracy.
A slight deficit in power from N -body simulations at
k ∼ 0.2 h Mpc−1 relative to the perturbation theory
predictions at z = 2 may be due to artificial transient
modes from the Zel’dovich approximation used to gen-
erate initial conditions. One may eliminate such an ef-
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Here, the functions F and G as well as their recursion
relations are given in (Jain & Bertschinger 1994). As the
linear density field, δ1, is a Gaussian random field, the
ensemble average of odd powers of δ1 vanishes. There-
fore, the next-to-leading order correction to P (k) is

P (k, τ) = a2(τ)P11(k) + a4(τ)[2P13(k) + P22(k)], (10)

where

P22(k) = 2

∫

d3q

(2π)3
P11(q)P11(|k−q|)

[

F (s)
2 (q,k − q)

]2
,

(11)

F (s)
2 (k1,k2) =
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7
+

2

7

(k1 · k2)2

k2
1k

2
2

+
k1 · k2

2

(

1

k2
1

+
1

k2
2

)

,

(12)

2P13(k)=
2πk2

252
P11(k)

∫

∞

0

dq

(2π)3
P11(q)

×

[

100
q2

k2
− 158 + 12

k2

q2
− 42

q4

k4

+
3

k5q3
(q2 − k2)3(2k2 + 7q2) ln

(

k + q

|k − q|

)

]

.(13)

While F (s)
2 (k1,k2) should be modified for different cos-

mological models, the difference vanishes when k1 ∥ k2.
The biggest correction comes from the configurations

with k1 ⊥ k2, for which [F (s)
2 (ΛCDM)/F (s)

2 (EdS)]2 ≃
1.006 and ! 1.001 at z = 0 and z ≥ 1, respec-

tively. Here, F (s)
2 (EdS) is given by equation (12), while

F (s)
2 (ΛCDM) contains corrections due to Ωm ̸= 1 and

ΩΛ ̸= 0 (Matsubara 1995; Scoccimarro et al. 1998), and
we used Ωm = 0.27 and ΩΛ = 0.73 at present. The in-
formation about different background cosmology is thus
almost entirely encoded in the linear growth factor. We
extend the results obtained above to arbitrary cosmo-
logical models by simply replacing a(τ) in equation (10)
with an appropriate linear growth factor, D(z),

P (k, z) = D2(z)P11(k) + D4(z)[2P13(k) + P22(k)]. (14)

We shall use equation (11)–(14) to compute P (k, z).

3. N-BODY SIMULATIONS AND ANALYSIS METHOD

We use the TVD (Ryu et al. 1993) code to simu-
late the evolution of δ(x, τ). The TVD code uses
the Particle-Mesh scheme for gravity, and the Total-
Variation-Diminishing (TVD) scheme for hydrodynam-
ics, although we do not use hydrodynamics in our cal-
culations. To increase the dynamic range of the de-
rived power spectrum and check for convergence of the
results, we use four box sizes, Lbox = 512, 256, 128,
and 64 h−1 Mpc, with the same number of particles,
N = 2563. (We use 5123 meshes for doing FFT.) We
use the following cosmological parameters: Ωm = 0.27,
Ωb = 0.043, ΩΛ = 0.73, h = 0.7, σ8 = 0.8, and ns = 1.
We output the simulation data at z = 6, 5, 4, 3, 2 and 1
for 512, 256 and 128 h−1 Mpc, while only at z = 6, 5, 4
and 3 for 64 h−1 Mpc.

We suppress sampling variance of the estimated P (k, z)
by averaging P (k, z) from 60, 60, 20, and 15 indepen-
dent realizations of 512, 256, 128, and 64 h−1 Mpc sim-
ulations, respectively. We calculate the density field on

Fig. 1.— Power spectrum at z = 1, 2, 3, 4, 5 and 6 (from top
to bottom), derived from N-body simulations (dashed lines), per-
turbation theory (solid lines), and linear theory (dot-dashed lines).
We plot the simulation data from 512, 256, 128, and 64 h−1 Mpc
simulations at k ≤ 0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1,
0.5 < k ≤ 1.4 h Mpc−1, and 1.4 < k ≤ 5 h Mpc−1, respectively.
Note that we did not run 64 h−1 Mpc simulations at z = 1 or 2.

5123 mesh points from the particle distribution by the
Cloud-In-Cell (CIC) mass distribution scheme. We then
Fourier transform the density field and average |δk(τ)|2

within k − ∆k/2 ≤ |k| < k + ∆k/2 over the angle to
estimate P (k, z). Here, ∆k = 2π/Lbox. Finally, we cor-
rect the estimated P (k) for loss of power due to the CIC
pixelization effect using the window function calculated
from 100 realizations of random particle distributions.

We use the COSMICS package (Bertschinger 1995) to
calculate the linear transfer function (with linger) and
generate the input linear matter power spectrum and
initial conditions (with grafic). We have increased the
number of sampling points for the transfer function in
k space from the default value of COSMICS, as the de-
fault sampling rate is too low to sample the baryonic
acoustic oscillations accurately. (The default rate re-
sulted in an artificial numerical smoothing of the oscil-
lations.) We locate initial particles on the regular grid
(i.e., we do not randomize the initial particle distribu-
tion), and give each particle the initial velocity field us-
ing the Zel’dovich approximation. This procedure sup-
presses shot noise in the derived power spectrum, which
arises from randomness of particle distribution. We have
checked this by comparing P (k, z) from the initial con-
dition to the input linear spectrum. However, some shot
noise would arise as density fluctuations grow over time.
While it is difficult to calculate the magnitude of shot
noise from the structure formation, we estimate it by
comparing P (k, z) from large-box simulations with that
from small-box simulations. We do not find any evi-
dence for shot noise at z ≥ 1; thus, we do not sub-
tract shot noise from the estimated P (k, z). To be
conservative, we use 512, 256, 128, and 64 h−1 Mpc
simulations to obtain P (k, z) at k ≤ 0.24 h Mpc−1,
0.24 < k ≤ 0.5 h Mpc−1, 0.5 < k ≤ 1.4 h Mpc−1,
and 1.4 < k ≤ 5 h Mpc−1, respectively, to avoid the
residual CIC pixelization effect and potential contami-
nations from unaccounted shot noise terms as well as ar-
tificial “transients” from initial conditions generated by

z=6

z=1
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(

k + q

|k − q|

)

]

.(13)

While F (s)
2 (k1,k2) should be modified for different cos-

mological models, the difference vanishes when k1 ∥ k2.
The biggest correction comes from the configurations

with k1 ⊥ k2, for which [F (s)
2 (ΛCDM)/F (s)

2 (EdS)]2 ≃
1.006 and ! 1.001 at z = 0 and z ≥ 1, respec-

tively. Here, F (s)
2 (EdS) is given by equation (12), while

F (s)
2 (ΛCDM) contains corrections due to Ωm ̸= 1 and

ΩΛ ̸= 0 (Matsubara 1995; Scoccimarro et al. 1998), and
we used Ωm = 0.27 and ΩΛ = 0.73 at present. The in-
formation about different background cosmology is thus
almost entirely encoded in the linear growth factor. We
extend the results obtained above to arbitrary cosmo-
logical models by simply replacing a(τ) in equation (10)
with an appropriate linear growth factor, D(z),

P (k, z) = D2(z)P11(k) + D4(z)[2P13(k) + P22(k)]. (14)

We shall use equation (11)–(14) to compute P (k, z).

3. N-BODY SIMULATIONS AND ANALYSIS METHOD

We use the TVD (Ryu et al. 1993) code to simu-
late the evolution of δ(x, τ). The TVD code uses
the Particle-Mesh scheme for gravity, and the Total-
Variation-Diminishing (TVD) scheme for hydrodynam-
ics, although we do not use hydrodynamics in our cal-
culations. To increase the dynamic range of the de-
rived power spectrum and check for convergence of the
results, we use four box sizes, Lbox = 512, 256, 128,
and 64 h−1 Mpc, with the same number of particles,
N = 2563. (We use 5123 meshes for doing FFT.) We
use the following cosmological parameters: Ωm = 0.27,
Ωb = 0.043, ΩΛ = 0.73, h = 0.7, σ8 = 0.8, and ns = 1.
We output the simulation data at z = 6, 5, 4, 3, 2 and 1
for 512, 256 and 128 h−1 Mpc, while only at z = 6, 5, 4
and 3 for 64 h−1 Mpc.

We suppress sampling variance of the estimated P (k, z)
by averaging P (k, z) from 60, 60, 20, and 15 indepen-
dent realizations of 512, 256, 128, and 64 h−1 Mpc sim-
ulations, respectively. We calculate the density field on

Fig. 1.— Power spectrum at z = 1, 2, 3, 4, 5 and 6 (from top
to bottom), derived from N-body simulations (dashed lines), per-
turbation theory (solid lines), and linear theory (dot-dashed lines).
We plot the simulation data from 512, 256, 128, and 64 h−1 Mpc
simulations at k ≤ 0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1,
0.5 < k ≤ 1.4 h Mpc−1, and 1.4 < k ≤ 5 h Mpc−1, respectively.
Note that we did not run 64 h−1 Mpc simulations at z = 1 or 2.

5123 mesh points from the particle distribution by the
Cloud-In-Cell (CIC) mass distribution scheme. We then
Fourier transform the density field and average |δk(τ)|2

within k − ∆k/2 ≤ |k| < k + ∆k/2 over the angle to
estimate P (k, z). Here, ∆k = 2π/Lbox. Finally, we cor-
rect the estimated P (k) for loss of power due to the CIC
pixelization effect using the window function calculated
from 100 realizations of random particle distributions.

We use the COSMICS package (Bertschinger 1995) to
calculate the linear transfer function (with linger) and
generate the input linear matter power spectrum and
initial conditions (with grafic). We have increased the
number of sampling points for the transfer function in
k space from the default value of COSMICS, as the de-
fault sampling rate is too low to sample the baryonic
acoustic oscillations accurately. (The default rate re-
sulted in an artificial numerical smoothing of the oscil-
lations.) We locate initial particles on the regular grid
(i.e., we do not randomize the initial particle distribu-
tion), and give each particle the initial velocity field us-
ing the Zel’dovich approximation. This procedure sup-
presses shot noise in the derived power spectrum, which
arises from randomness of particle distribution. We have
checked this by comparing P (k, z) from the initial con-
dition to the input linear spectrum. However, some shot
noise would arise as density fluctuations grow over time.
While it is difficult to calculate the magnitude of shot
noise from the structure formation, we estimate it by
comparing P (k, z) from large-box simulations with that
from small-box simulations. We do not find any evi-
dence for shot noise at z ≥ 1; thus, we do not sub-
tract shot noise from the estimated P (k, z). To be
conservative, we use 512, 256, 128, and 64 h−1 Mpc
simulations to obtain P (k, z) at k ≤ 0.24 h Mpc−1,
0.24 < k ≤ 0.5 h Mpc−1, 0.5 < k ≤ 1.4 h Mpc−1,
and 1.4 < k ≤ 5 h Mpc−1, respectively, to avoid the
residual CIC pixelization effect and potential contami-
nations from unaccounted shot noise terms as well as ar-
tificial “transients” from initial conditions generated by

バリオン音響振動の非線形重力進化の記述に使えそうだ

重力の非線形性が弱い領域なら、
標準摂動論の高次ループ計算でもっと広い範囲を記述できる？



標準摂動論の苦難
高次補正項をどんどん足し
てもよくなるわけではない

最低次の次の次 (2-loop)

最低次の次 (1-loop)

シミュレー
ション

AT, Nishimichi, Saito & Hiramatsu (’09)

展開の収束性の向上が必要

正の寄与→過大評価気味

2ループ

1ループ 

負の寄与→low-zで過小評価



赤方偏移空間ゆがみ (RSD)
銀河の特異速度場がドップラー効果を通じて赤方偏移測定
に影響、銀河クラスタリングの統計的等方性が破れる

v :
ẑ :{ 銀河の速度場

観測者の視線方向

実際の位置観測される
見かけの位置
（赤方偏移空間）

⌅s = ⌅r +
(⌅v · ẑ)
aH(z)

ẑ ;
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small-scale random motion 
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シミュレーション：西道

実空間と赤方偏移空間は
非線形な関係になっている

（速度場が r に依存）

(Redshift-Space Distortions)
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM ⇥

�
rd,fid/rd

�
, H⇥

�
rd/rd,fid

�
, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

ods is consistent with what we observe in mocks (see Section 7.2
and Fig. 10). In all cases the µ-wedges analyses give significantly
tighter constraints than the multipole analyses, in both configura-
tion space and Fourier space. The consensus constraints, described
in §8.2 below, are slightly tighter than those of the individual wedge
analyses. At all three redshifts and for all three quantities, mapping
distance, expansion rate, and the growth of structure, the 68% con-
fidence contour for the consensus results overlaps the 68% confi-
dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 11 below.
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(Redshift-Space Distortions)



重力のプローブとしてのRSD
線形Kaiser 公式

成長率パラメーター ‘ f ’ を決定できれば宇宙論的
スケールでの重力のテストに使える

(Kaiser ’87)

線形理論の適用範囲は狭い→非線形性の取り扱いが本質的

e.g., Linder (’08); Guzzo et al. (’08); Yamamoto et al. (’08); Percival & White (’09)

重力由来の密度ゆらぎの成長率

f(z) � d lnD+

d ln a
⇥ {�m(z)}�
線形成長因子

スケール因子
観測者

コヒーレント
な運動

四重極非等方性

視線方向

波数ベクトルと視線
方向の方向余弦

実空間の密度場赤方偏移空間の密度場
�(S)(~k) = (1 + fµ2) �(~k) µ :

ただし、



摂動論の苦難

手で減衰項を加えても（ガウス・ローレンツ型）

線形理論

実空間ならここまで合うけど

Redshift-space distortions

Kaiser Effect
large-scale coherent motion
→ enhancement of clustering

Finger-of-God Effect
small-scale random motion 
→ suppression of clustering

z-space r-space

peculiar velocity

streaming model

r-space

e.g., Scoccimarro’04

vel. divergence: vel. dispersion: σv

k⊥

k||

μ = 0

μ = 1

実空間

Redshift-space distortions

Kaiser Effect
large-scale coherent motion
→ enhancement of clustering

Finger-of-God Effect
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Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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peak of BAOs around k! 0:05" 0:1h Mpc"1 reveals a
small discrepancy, which becomes significant for lower
redshifts and can produce few % errors in the power
spectrum amplitude.

These results indicate that the existing PT-based ap-
proaches fail to describe the two competitive effects of
redshift distortion in the power spectrum.1 A proper ac-
count of these is thus essential in accurately modeling
BAOs.

B. Phenomenological model description

Next consider the phenomenological models of redshift
distortion, which have been originally introduced to ex-
plain the observed power spectrum on small scales.
Although the relation between the model and exact ex-
pression (4) is less clear, for most of the models frequently
used in the literature, the redshift-space power spectrum is
expressed in the form (e.g., [42,49–54])

PðSÞðk;!Þ ¼ DFoG½k!f"v'PKaiserðk;!Þ; (9)

where the term PKaiserðk;!Þ represents the Kaiser effect,
and the term DFoG½k!f"v' indicates a damping function
which mimics the Finger-of-God effect. The quantity "v is
the one-dimensional velocity dispersion defined by "2

v ¼
hu2zð0Þi. The variety of the functional forms forPKaiserðk;!Þ
and DFoG½k!f"v' is summarized as follows.
The Kaiser effect has been first recognized from the

linear-order calculations [43], from which the enhance-
ment factor ð1þ f!2Þ2 is obtained [see Eq. (5)]. As a
simple description for the Kaiser effect, one may naively
multiply the nonlinear matter power spectrum by this
factor, just by hand. Recently, proper account of the non-
linear effect has been discussed [42,49], and a nonlinear
model of the Kaiser effect has been proposed using the
real-space power spectra. Thus, we have

PKaiserðk;!Þ ¼
! ð1þ f!2Þ2P##ðkÞ linear;
P##ðkÞ þ 2f!2P#$ðkÞ þ f2!4P$$ðkÞ nonlinear:

(10)

FIG. 1 (color online). Ratio of power spectra to smoothed reference spectra in redshift space, PðSÞ
‘ ðkÞ=PðSÞ

‘;no-wiggleðkÞ. N-body

results are taken from the WMAP5 simulations of Ref. [34]. The reference spectrum PðSÞ
‘;no-wiggle is calculated from the no-wiggle

approximation of the linear transfer function with the linear theory of the Kaiser effect taken into account. Short dashed and dot-dashed
lines, respectively, indicate the results of one-loop PT and Lagrangian PT calculations for the redshift-space power spectrum [Eqs. (5)
and (6)].

1Nevertheless, it should be noted that the Lagrangian PT would still be powerful in predicting the two-point correlation function
around the baryon acoustic peak. In both real and redshift spaces, the prediction reasonably recovers the smeared peak and trough
structures, and it gives a better agreement with N-body simulation.
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Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:
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with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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標準摂動論(1-loop)

非摂動成分（ハロー）の影響が大スケールにも現れる

AT, Nishimichi 
& Saito (’10)



摂動計算を改良する
バリオン音響振動の非線形進化

赤方偏移空間ゆがみ
パワースペクトルの厳密な表式をキュミュラント展開
で書き換え、非摂動項を特定・分離後、摂動展開

密度揺らぎを微小量として摂動展開する標準摂動論を
非摂動量を導入して展開を再構成（再和・くりこみ）
（プロパゲーター）

AT & Hiramatsu (’08)
AT, Nishimichi, Saito & Hiramatsu (’09)
AT, Bernardeau, Nishimichi & Codis (’12)

線形 Kaiser 公式の非線形拡張版を導出

精度・収束性が向上、適用範囲が広がる（高速化にも成功）

AT, Nishimichi & Saito (’10)
AT & Nishimichi (’11)



プロパゲーター
Crocce & Scoccimarro (’06); AT & 
Hiramatsu (’08); Bernardeau et al. (’08)

IV. THE LARGE-k BEHAVIOR OF MULTIPOINT
PROPAGATORS

A. The large-k limit of the two-point propagator

As discussed in the previous section, the two-point
propagator Gab generalizes gab beyond linear theory and
thus reflects a key property of the evolved fields. The
general properties of Gab have been explored in detail in
[13], but we briefly recall them here to motivate their
generalization to multipoint propagators.

Following Eqs. (9) and (10), and the definition in
Eq. (13), one can expand the function Gab with respect
to the amplitude of initial fluctuations,

Gabðk; sf; siÞ ¼ gabðsf $ siÞ þG1-loop
ab ðk; sf; siÞ þ . . .

(24)

where G1-loop
ab ðk; sf; siÞ is the first nonlinear correction

term, describing the transition into the nonlinear regime.
Graphically, this term corresponds to a ‘‘one-loop’’ dia-
gram (i.e. an integral over P0), which is shown in Fig. 3.

As nonlinear effects become important Gab is expected
to decay to zero since they erase the one-to-one correspon-
dence of modes valid in the linear regime. This introduces
a characteristic scale that describes the decay length of the
two-point propagator. It was shown in [13] that this decay
can be computed exactly in the high-k limit, where a subset
of diagrams is expected to provide the dominant contribu-
tion. Following a line of calculation that we will use again
shortly, it was shown that in the large-k limit,

Gabðk; sf; siÞ ¼ exp
!
$ k2

2
!2

vðesf $ esiÞ2
"
gabðsf $ siÞ;

(25)

where the characteristic decay length is determined by the
rms velocity fluctuations

!2
v ¼ 1

3

Z 1

0

d3k

k2
P0ðkÞ: (26)

In [13], it is shown how to match this result valid for
k!v & 1 to the low-k behavior described by Eq. (24), to
obtain a prescription for its full time and k dependence.
This prescription was found to be in good agreement with
numerical simulations at all scales and different redshifts
for density and velocity divergence propagators.

Here, we concentrate on the large-k behavior of the
density propagator from growing-mode initial conditions,

!ð1Þ ' !ð1Þ
1bub ¼ G11 þG12 (we will henceforth use bothG

and !ð1Þ to refer to the two-point propagator). We use the

algorithm presented in [13] to measure !ð1Þ based on the
cross-correlation property in Eq. (14). We defer a descrip-
tion of the simulations used here until Sec. VI below.

Figure 4 shows !ð1Þ normalized by the linear growth factor

!ð1Þ
tree ¼ g11 þ g12, with gab the linear propagator defined in

Eq. (7); the unusual notation for the growth factor is used
here to emphasize that it is given by the tree contributions
to the two-point propagator; this will have a natural gen-
eralization for multipoint propagators. The figure shows

log!ð1Þ vs logk2 to emphasize the Gaussian decay predicted
very well by Eq. (25) at all redshifts with a characteristic
scale given by Eq. (26).
In the following sections we extend the studies already

carried out with Gab to the case of the three-point propa-

gator !ð2Þ and, when possible, to the most general case of
!ðnÞ.

B. Dominant diagrams and principal trees

To study the high-k regime of the propagators, the first
step is to identify the set of diagrams that is expected to

ab
(1-loop)(k, s2, s1) =

s1s2

FIG. 3. The one-loop contribution to Gabðk; s2; s1Þ. The (
represents a primordial power spectrum P0ðqÞ with the corre-
sponding ‘‘loop’’ momentum q integrated over with weight
ð2"Þ$3

R
d3q. See [13] for an explicit calculation of this dia-

gram.

FIG. 4 (color online). The large-k limit of the two-point den-
sity propagator !ð1Þ. Symbols correspond to measurements in
numerical simulations at redshifts z ¼ 1, 0.5 and z ¼ 0 (top to
bottom); see text for details. The solid lines correspond to the
large-k limit expression given in Eq. (25). The linear relation
obtained by plotting logG vs k2 makes it evident that the
suppression of G is indeed Gaussian in the high-k limit.
Moreover, the slope is very well predicted by Eqs. (25) and
(26).
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poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2–0:3h Mpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.

TARUYA et al. PHYSICAL REVIEW D 86, 103528 (2012)

103528-10

Lbox = 2, 048 h�1 Mpc
# of particles：1, 0243

# of runs：
cosmology：wmap5

60

cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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拡張版Kaiser公式
赤方偏移空間のパワースペクトル（厳密）
P (S)(k) =

�
d3x eik·x

�
e�ikµf�uz {�(r) + f�zuz(r)} {�(r�) + f�zuz(r�)}

�

uz :規格化された視線速度場

�uz ⌘ uz(r)� uz(r
0)

x ⌘ r� r

0

キュミュラント表記に書き直し
非摂動項を分離、残りを展開

+A(k, µ) + B(k, µ)
�

P (S)(k, µ) = e�(kµf⇤v)2
�
P��(k)� 2fµ2P�⇥(k) + f2µ4P⇥⇥(k)

非摂動減衰項
(フリーパラメーター含む）

非線形 Kaiser 項 高次補正（バイスペクトル
＋パワースペクトル^2）

(c.f.) 線形Kaiser公式: P (S)(k, µ) = (1 + f µ2)2 P��(k)

AT, Nishimichi & Saito (’10)
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観測への応用
Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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RegGp−loop
aþ ðkÞ ¼

Z
dq
q
Kp−loop

aþ ðk; qÞP0ðqÞ: (76)

We then have, for instance,

K1-loop
1þ ðk; qÞ ¼ 4πq3

!
fðq; kÞ þ 1

6

k2

q2

"
; (77)

K2−loop
1þ ðk;qÞ ¼−ð4πÞ2q3

Z
dq1

q21k
2

q21þq2
αf

!
q1
k
;
q
k

"
P0ðq1Þ:

(78)

Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.
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Pn-loop(k) �
�

d ln q Kn-loop(k, q) P0(q)

（高次にいくと）
小スケールからすごく大きな寄与 !!



原因
シミュレーションだと小スケールからの寄与はむしろ抑制
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摂動計算の拠り所にしていた基礎方程式に問題がある

無衝突ボルツマンの単一流近似

そもそも

摂動計算の高次は小スケールからの寄与がすごく大きくなる
一方、

→小スケールで近似が破れる

Power spectrum and kernel function in effective field theory of large-scale structure

Atsushi Taruya
(Dated: April 9, 2015)

Using a numerical scheme to compute the kernels of standard perturbation theory (PT), we
compute the kernel function of power spectrum in the context of effective field theory of large-scale
structure (EFTofLSS).

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

In the standard PT formalism, we normally adopt the single-stream approximation, under which the (CDM+baryon)
system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+ H v +

1
a
(v ·∇) · v = −1

a
∇ψ − 1

ρm

1
a
∇τij , (2)

1
a2

∇2ψ =
κ2

2
ρm δ (3)

(4)

with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])

τij = ρm

[(
c2
s δ −

c2
bv

aH
∇ · v

)
δij −

3
4

c2
sv

aH

{
∂jvi + ∂ivj −

2
3
(∇ · v)δij

}]
. (5)

The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have

H−1 ∂δ(k)
∂t

+ θ(k) = −
∫

d3k1d3k2

(2π)3
δD(k − k12)α(k1, k2) θ(k1)δ(k2), (6)

H−1 ∂θ(k)
∂t

+

{
2 +

Ḣ

H2

}
θ(k) +

κ2 ρm

2H2
δ(k) − k2

a2H2

{
c2
s δ(k) − c2

v θ(k)
}

= −1
2

∫
d3k1d3k2

(2π)3
δD(k − k12)β(k1, k2) θ(k1)θ(k2), (7)

where we define c2
v = c2

bv + c2
sv

1. The functions α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.

有効場理論的アプローチ
（パラメーターを導入）

Baumann et al. (’12), Carrasco et al. (’12)
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system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+ H v +

1
a
(v ·∇) · v = −1

a
∇ψ − 1

ρm

1
a
∇τij , (2)

1
a2

∇2ψ =
κ2

2
ρm δ (3)

(4)

with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])

τij = ρm

[(
c2
s δ −

c2
bv

aH
∇ · v

)
δij −

3
4

c2
sv

aH

{
∂jvi + ∂ivj −

2
3
(∇ · v)δij

}]
. (5)

The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have

H−1 ∂δ(k)
∂t

+ θ(k) = −
∫

d3k1d3k2

(2π)3
δD(k − k12)α(k1, k2) θ(k1)δ(k2), (6)

H−1 ∂θ(k)
∂t

+

{
2 +

Ḣ

H2

}
θ(k) +

κ2 ρm

2H2
δ(k) − k2

a2H2

{
c2
s δ(k) − c2

v θ(k)
}

= −1
2

∫
d3k1d3k2

(2π)3
δD(k − k12)β(k1, k2) θ(k1)θ(k2), (7)

where we define c2
v = c2

bv + c2
sv

1. The functions α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.
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Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).
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ラグランジアンアプローチにもとづく
単一流近似を超えた取り扱い

理論予言を劇的に改善！（適切なスムージングも必要）



まとめ
摂動論的アプローチにもとづく宇宙の大規模構造
の理論的記述と精密宇宙論観測への応用

摂動計算の用途が広がり、観測への応用が進んでいる
大スケール・高赤方偏移の観測の進展に伴い

バリオン音響振動の測定
赤方偏移空間ゆがみの測定
修正重力理論の制限
ニュートリノ質量の制限、etc…

課題
単一流近似をこえる扱い→ 新しいブレークスルー？

摂動論の改良・拡張
（くりこみ・高速化、etc）

有効場理論的アプローチ？
（６次元）無衝突ボルツマンシミュレーションとのシナジー


