X線観測とCTA

Multiwavelength Astronomy and CTA: X-rays

高橋忠幸

Tadayuki Takahashi ISAS/JAXA

ASTRO-H White Paper

"Shock and Acceleration" Aharonian, Uchiyama et al. (2014, astro-ph) "Broad-band Spectroscopy and Polarimetry", Paolo, Stawarz et al. (2014, astro-ph) "Multiwavelenth Astronomy and CTA: X-rays", Takahashi, Uchiyama, Stawarz (2013)

ASTRO-H (launch in 2015 JFY) will push on X-ray astronomy to a new exciting phase

There are many important topics, which ASTRO-H and TeV telescopes should work together to understand the non-thermal universe.

X-ray observation is very sensitive to the existence of the distribution of high energy electrons (particle accelerators)

RSTRO-H

1. keV-TeV Connection: Binaries

1. keV-TeV Connection: Blazars

ASTRO-H, which is the 6th in the series of the X-ray observatories from Japan, is designed to have

1) Higher Energy Resolution

and

2) Wider energy coverage with higher sensitivities than existing X-ray missions.

ASTRO-H is an international X-ray observatory. More than 200 scientists from Japan/US/Europe/ Canada are involved in.

2008: The ASTRO-H project hasofficially started.2010: PDR completed2012: CDR completed

ASTRO-H Micro-calorimeter

- X-ray micro-calorimeter spectrometer with energy resolution better than 7 eV (FWHM) (0.3 keV to 12 keV)
- 6×6 array with 3' \times 3' field of view
- Operated at 50 mK
 - Nominal expected liquid He lifetime 3.3 years (can be operated even w/o He)

Imaging

8

3. Broadband Coverage by ASTRO-H

3. Broadband Coverage by ASTRO-H

3. Broadband Coverage by ASTRO-H

- 1) To trace particle acceleration structures in clusters of galaxies and SNRs;
- 2) To investigate the detailed physics of astrophysical jets.

Takahashi, Uchiyama and Stawarz (2013)

FM XRTs and Instruments are being delivered

XRT

SXS

SXI

2015/3月 (総合試験/衛星の最終組み上げ)

リファービッシュ

4. X-ray Missions in the next 10 years

Synchrotron X-ray spectra up to 50 keV

High Statistics → discrimination of models

 → determination of physical parameters

 Image → Spatial structure of the accelerator

Toward Understanding the Origin of Galactic CRs

Diffusive Shock Acceleration

"Efficiency" does matter.

Toward Understanding the Origin of Galactic CRs

Diffusive Shock Acceleration

"Efficiency" does matter.

Acceleration Efficiency (1): "the energy content in CRs"

 How thermal (Maxwellian) particles can be injected into Fermi acceleration?
 Depends on B-field orientation?
 Acceleration of protons?
 Energy content of protons?

Toward Understanding the Origin of Galactic CRs

Diffusive Shock Acceleration

"Efficiency" does matter.

Acceleration Efficiency (1): "the energy content in CRs"

 How thermal (Maxwellian) particles can be injected into Fermi acceleration?
 Depends on B-field orientation?
 Acceleration of protons?
 Energy content of protons?

Acceleration Efficiency (2): "the maximum attainable energy"

B-field amplification?
 Depends on B-field orientation?
 Escaping CRs? (important for protons)

Toward Understanding the Origin of Galactic CRs

Diffusive Shock Acceleration

"Efficiency" does matter.

Acceleration Efficiency (1): "the energy content in CRs"

 How thermal (Maxwellian) particles can be injected into Fermi acceleration?
 Depends on B-field orientation?
 Acceleration of protons?
 Energy content of protons?

Acceleration Efficiency (2): "the maximum attainable energy"

B-field amplification?
 Depends on B-field orientation?
 Escaping CRs? (important for protons)

Key question: What is the partition of shock energy into bulk motions, thermal energy, and relativistic particles?

Bilateral SNR: a good keV-TeV correlation?

Spatially resolved spectral data (vs model!) will help disentangle leptonic and hadronic components

Thermal Emission from Non-thermal SNR

• X-ray thermal emission can be used to estimate the gas density and the fraction of shock energy consumed for heating (important information to study the origin of the Gamma-ray emission)

Thermal Emission from Non-thermal SNR

• X-ray thermal emission can be used to estimate the gas density and the fraction of shock energy consumed for heating (important information to study the origin of the Gamma-ray emission)

•Synchrotron X-ray spectrum beyond the cutoff measured with HXI is also important to study maximum energy attainable in the SNR.

Recent Detection of thermal lines

SNR J1713

HESS

Suzaku

0

3

6

Ferm

synchrotron by secondary e^{\pm} : (synchrotron by primary electrons with an unavoidable cutoff of $hv_0 \sim 1 \text{ keV}$ is expected to be steep at hard X-rays.)

F. Aharonian (2012)

Blazars (BL Lacs)

from L. Stawartz (ASTRO-H Science Meeting) Jet-Disk Coupling in Active Galaxies

Jet-Disk Coupling in Active Galaxies

Gamma-ray Detector onboard ASTRO-H

Energy dependent polarization measurement from

From ASTRO-H White Paper (Broad band Spectroscopy and Polarimetry) L. Stawarz et al.

Cluster of Galaxies

Cluster of Galaxies

Turbulent and bulk motions in Cluster of Galaxies

ASTRO-H can obtain dynamical information about the ICM from line shifts, widths

First ever probe of:

- plasma viscosity
- turbulent pressure support
- merger dynamics
- motions induced by AGN feedback

From ASTRO-H White Paper (Cluster related science) S. Allen, T. Kitayama, M. Markevitch et al.

Turbulent and bulk motions in Cluster of Galaxies

From ASTRO-H White Paper (Cluster related science) S. Allen, T. Kitayama, M. Markevitch et al.

- 1) ASTRO-H is scheduled to fly in 2015_{JFY}. Wide-band and high-resolution observations will provide exciting data sets for many science fields. Wide-band observations from 0.3 keV-600 keV are important to constrain non-thermal electron spectra.
- 2) 7eV energy resolution of SXS/ASTRO-H gives strong constraint on thermal emission.
- Synergy with VHE gamma-ray observatories, such as CTA, is obviously important. Truly simultaneous observations are crucial for blazar-type objects. Observations in faint phase with comparable sensitivity are important to understand the nature of blazer jet.

ASTRO-H International Team

ASTRO-H International Team

Science Task Force

Stars White dwarfs Low-mass binaries High-mass binaries and magnetars Black hole spin and accretion Young SNRs Old SNRs and PWN Galactic center ISM and galaxies Cluster-related sciences AGN reflection AGN winds New spectral features Shocks and acceleration Broad-band and polarization High-z chemical evolution

ASTRO-H International Team

A. Appendix

Parameter	Hard X-ray	Soft X-ray	Soft X-ray	Soft γ -ray
	Imager	Spectrometer	Imager	Detector
	(HXI)	(SXS)	(SXI)	(SGD)
Detector	Si/CdTe	micro	X-ray	Si/CdTe
technology	$\operatorname{cross-strips}$	calorimeter	CCD	Compton Camera
Focal length	12 m	5.6 m	5.6 m	-
Effective area	$300 \text{ cm}^2 @30 \text{ keV}$	210 cm^2 @6 keV	$360 \text{ cm}^2@6 \text{ keV}$	$>20 \text{ cm}^2$ @100 keV
		$160 \text{ cm}^2 @ 1 \text{ keV}$		Compton Mode
Energy range	$5-80 { m keV}$	$0.3-12 \mathrm{keV}$	$0.4-12~{ m keV}$	$40-600~{ m keV}$
Energy	$2 { m keV}$	< 7 eV	< 200 eV	< 4 keV
resolution	(@60 keV)	(@6 keV)	(@6 keV)	(@60 keV)
(FWHM)				
Angular	<1.7 arcmin	<1.3 arcmin	<1.3 arcmin	_
resolution				
Effective	$\sim 9 \times 9$	$\sim 3 \times 3$	$\sim 38 \times 38$	$0.6 \times 0.6 \ \mathrm{deg}^2$
Field of View	arcmin^2	arcmin^2	arcmin^2	(< 150 keV)
Time resolution	$25.6~\mu { m s}$	$5 \ \mu s$	4 sec/0.1 sec	$25.6 \ \mu \mathrm{s}$
Operating	$-20^{\circ}\mathrm{C}$	50 mK	$-120^{\circ}\mathrm{C}$	$-20^{\circ}\mathrm{C}$
temperature				

Table 2. Key parameters of the ASTRO-H payload

A. Appendix

SGD FineCollimator Full FOV 66'×66'

(Contour for Transmission=0 for E~40 keV)

The center of the SGD FOV is designed to match the SXS FOV center.

File Revision: 20141010_0951SN

Resolving power

