

# Gamma-Ray Observations with Fermi Gamma-ray Space Telescope and CTA



### Yasushi Fukazawa

Hiroshima University



## Contents

- Introduction to Fermi-LAT
- Recent highlights and Catalogs
- Supernova Remnants
- Blazars and Other AGNs

Most of unpublished results are referred to the slides at the 5<sup>th</sup> Fermi Symposium web site: http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2014/program/

## Overview of LAT: How it works

- <u>Precision Si-strip Tracker (TKR)</u> Measure the photon direction; gamma ID.
- <u>Hodoscopic Csl Calorimeter</u> (CAL) Measure the photon energy; image the shower.
- <u>Segmented Anticoincidence</u> <u>Detector (ACD)</u> Reject background of charged cosmic rays; segmentation removes self-veto effects at high energy.
- <u>Electronics System</u> Includes flexible, robust hardware trigger and software filters.



Systems work together to identify and measure the flux of cosmic gamma rays with energy 20 MeV - >300 GeV.

## **Tracker Module Mechanical Design**



# 6.7 years have passed since launch!

All-sky survey is continuing without any significant problems of satellite and instrument.

- Launch from Cape Canaveral Air Station 11 June 2008 at 12:05PM EDT
- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.



# **Operating modes**

- Primary observing mode is Sky Survey
  - Full sky every 2 orbits (3 hours)
  - Uniform exposure, with each region viewed for ~30 minutes every 2 orbits
  - Best serves majority of science, facilitates multiwavelength observation planning
  - Exposure intervals commensurate with typical instrument integration times for sources
  - EGRET sensitivity reached in days



- Pointed observations when appropriate (selected by peer review in later years) with automatic earth avoidance selectable. Target of Opportunity pointing.
- Autonomous repoints for onboard GRB detections in any mode.



 Requires modifications to standard Synchrotron shock physics or alternative model (Non-uniform magnetic field, Diffusive shock acceleration, magnetic reconnection, Electromagnetic cascades)

### Up to 160 gamma-ray pulsars have been discovered !



Accurate measurement of Lobe-like structure of our Galaxy (Fermi Bubble)

Very important phenomena in high-energy astrophysics New source of cosmic-ray acceleration



Ackermann+14



### Origin of Fermi Bubble ?

### Leptonic / Hadronic Summary

- Gamma-ray spectrum
- Microwave haze
- No spectral changes
- Narrow boundary
- Absence of a visible shock front

#### Possible leptonic scenario: (Mertsch, Sarkar, Guo, Mathews etc.):

- Jets from the black hole create shock front
- Shock front dissipates, but leaves plasma turbulences behind
- Electrons are accelerated on the turbulences with a characteristic time less than the cooling time

#### Possible hadronic scenario: (Crocker, Aharonian):

- Wind from SNRs produces CR during several billions of years
- Magnetic fields confine the CR in the bubble volume
- WMAP haze produced by ~ 30 GeV electrons in the SNR wind which have a characteristic cooling time ~ 10 Myr



Franckowiak+14

# Fermi-LAT 3<sup>rd</sup> Catalog in public

Contain >3000 gamma-ray sources detected in 4 year survey



## More Fermi-LAT Catalogs

- 3FGL (4 years, P7REP): general catalog (3033 sources)
- 3LAC (based on 3FGL): AGN catalog (1591 sources)
- SNR (3 years, P7): 32 sources (out of the 289 in the Green catalog)
- 2FHL: (will be in public)
  - >6 years of P8 data
  - 50 GeV<E<2 TeV</li>
  - 350 sources (238 in 1FHL, 300 in 3FGL, 84 seen by ACTs)
- 1<sup>st</sup> GRB Catalog (Ackermann+13)
- 2<sup>nd</sup> Pulsar Catalog (Abdo+13)



## Start of data analysis using new reconstruction algorithm(PASS8) (PASS-8 data will be public soon.)

Acceptance :e



**Point Spread Function** 



2/26/13

~2

CC





New measurement of cosmic e+e- spectrum exceeding 1 TeV





Accurate measurement of isotropic diffuse gamma-ray background





- Same fit parameters as 3.7 year line search (Ackerman et al. PRD 88, 082002 (2013))
  - Fits in R3, 3.7 year,  $\pm 6\sigma_{\rm E}$  fit window
- No strong evidence of 133 GeV Feature in Pass 8
  - Lower fractional size and significance
  - Energy recon. in P7 vs. P8 changes within expected energy resolution

### Excess of GeV gamma-rays at the Galactic center ?

Currently, within the systematics.



Murgia+14



# 2FHL (2<sup>nd</sup> Fermi Hard Source List)

- Analysis
  - 50 GeV 2 TeV
  - ~6 years of data
  - Pass 8

Numbers are not definitive since depend on IRFs and Diffuse emission model which are subject to change

- Detections (preliminary numbers, will change somewhat)
  - ~320 sources
  - <u>71 detected by ACTs</u> (TeVCat)
  - 206 detected in 1FHL
  - 234 detected in 3FGL (<- 4 years up to 300 GeV)
  - ~60 brand new sources

## Count Map

Ajello+14

~6 years of P8 data (50 GeV – 2 TeV)

51,000 photons E > 50 GeV 18,000 photons E > 100 GeV 2,000 photons E > 500 GeV

~1 photons every deg<sup>2</sup>



## Count Map

Ajello+14

~6 years of P8\_data (50 GeV – 2 TeV)

51,000 photons E > 50 GeV 18,000 photons E > 100 GeV 2,000 photons E > 500 GeV

~1 photons every deg<sup>2</sup>



# Blazars' Spectra

Ajello+14

 BL Lacs of the HSP kind typically have their IC peak somewhere at E>100 GeV



## Comparison with the H.E.S.S. Galactic Survey



Close up of map on slide 11

Preliminary

#### Good match between HESS and Fermi maps

## Fermi and CTA

 A >50 GeV all-sky *Fermi* survey is a perfect complement to future large are surveys performed by CTA



### Supernova Remnants (SNR)

#### GeV-bright SNRs



#### Spectrum below 200 MeV clearly deviates from bremsstrahlung and agrees well with a hadronic scenario



Ackermann+13

#### RXJ1713: (age about1600y)



Proton content in leptonic model

Ee;max 20-40 TeV  
Wp < 
$$0.3 \times 10^{51}$$
(nH/0.1 cm<sup>-3</sup>)<sup>-1</sup>erg  
d = 1 kpc  
Electron index se =  $2\Gamma$ -1 =  $2.0 \pm 0.2$   
B~10uG

Abdo+11 **Leptonic Model** E<sup>2</sup>dN/dE [ MeV cm<sup>-2</sup> s<sup>-1</sup>] ermi LAT (24 months) 10 IESS (Aharonian et al. 2007) Porter et al. 2006 Ellison et al. 2010 (IC dominated) Zirakashvili & Aharonian 2010 (IC dominated) 10<sup>3</sup> 104 10<sup>5</sup> 10<sup>6</sup> 10<sup>7</sup> 10<sup>8</sup> Energy [ MeV ] E<sup>2</sup>dN/dE [ MeV cm<sup>-2</sup> s<sup>-1</sup>] 10 Fermi LAT (24 months) 10 HESS (Aharonian et al. 2007) Berezhko & Voelk 2010 Ellison et al. 2010 (π<sup>0</sup>dominated) Zirakashvili & Aharonian 2010 (π<sup>0</sup> dominated) Zirakashvili & Aharonian 2010 (IC/π<sup>0</sup> mixed) 10<sup>3</sup> 10<sup>4</sup> 10<sup>7</sup> 10<sup>5</sup> 10<sup>6</sup> 10<sup>8</sup>

Energy [ MeV ]





### Age v GeV Index

Hewitt+14

#### Young SNRs tend to be harder than older, interacting SNRs.



### **GeV-TeV Index**

#### Hewitt+14



#### T. J. Brandt



RCW 86: TeV shell-type SNR detected by HESS (D = 0.82°)



 Pass 8 reveals extended emission Diameter = 0.7±0.06°



## Where is PeVatron ?

The W28 Case



Abdo+10, Hanabata+14

## **G8.7-0.1** (Ajello+12) HESS SNR

Escaping cosmic rays from SNRs are interacting with molecular clouds.

## **Blazars**



(credit: J. Buckley)



| All     | <u>1444</u> |  |  |  |
|---------|-------------|--|--|--|
| FSRQ    | 34%         |  |  |  |
| BL Lac  | 52%         |  |  |  |
| Unknowr | ns 14%      |  |  |  |



140 days



#### FSRQa are sometimes detected up to TeV



PKS1222+21(MAGIC 2011) PKS1510-089(MAGIC )



### **TeV Blazars**

Typically, one-zone model fits SED.

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_0.jpeg)

# Constraint intergalactic magnetic field

![](_page_42_Figure_2.jpeg)

 $\Rightarrow$  B<sub>IGMF</sub> > 10<sup>-15</sup> G

(Neronov & Vovk 2010; Tavecchio et al. 2010)

 $\Rightarrow$  **B**<sub>IGMF</sub> > 10<sup>-18</sup> G

(Consider time variability)

(Dermer 2011)

>100 GeV photons from a distant blazar PKS0426-380 (z=1.1)

A possible source to constrain the intergalactic magnetic field and the extragalactic background light (EBL).

CTA accurate studies of these sources are important for further constraint. Tanaka+13

![](_page_43_Figure_3.jpeg)

Normal galaxies and Starburst galaxies TeV sources ... M82/NGC253

![](_page_44_Figure_1.jpeg)

![](_page_45_Picture_0.jpeg)

![](_page_45_Picture_1.jpeg)

Lott+14

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

12 FRI 3 FRII 8 SSRQ or CSS

| Name              | 3FGL                 | 2FGL             | 1FGL           | Type          | Photon index    |       |
|-------------------|----------------------|------------------|----------------|---------------|-----------------|-------|
| NGC 1218          | .10308.6+0408        | 148.8            | J0308.3+0403   | FRI           | 2.07±0.11       | P     |
| IC 310            | J0316.6+4119         | J0316.6+4119     | ***            | FRI/BLL       | 1.90±0.14       |       |
| NGC 1275          | J0319.8+4130         | J0319.8+4130     | J0319.7+4130   | FRI           | $2.07 \pm 0.01$ |       |
| For A             | (30322.5 - 3721)     | J0322.4-3717     | + * +          | FRI           | $2,20\pm0.11$   |       |
| TXS 0331+391      | J0334.2+3915         |                  |                | FRI/BLL?      | $2.11 \pm 0.17$ |       |
| TXS 0348+013      | $.10351.1 \pm 0128$  |                  | 22.2           | SSRQ          | $2.43 \pm 0.18$ |       |
| 3C 111            | J0418.5+3813         | ***              | J0419.0+3811   | FRII          | $2.79 \pm 0.08$ |       |
| Pictor A          | J0519.2-4542         |                  |                | FRII          | $2.49 \pm 0.18$ |       |
| PKS 0625-35       | J0627.0-3529         | J0627.1-3528     | J0627.3-3530   | FRI/BLL       | $1.87 \pm 0.06$ |       |
| 3C 189            | J0758.7+3747         |                  |                | FRI           | $2.16 \pm 0.16$ |       |
| 4C +39.23B        | J0824.9+3916         | APRIL CONTRACTOR |                | CSS           | $2.44 \pm 0.10$ | 40 5  |
| 3C 207            | J0840.8+1315         | J0840.7+1310     | J0840.8+1310   | SSRQ          | $2.47 \pm 0.09$ | 12 FI |
| 4C +39.26         | $J0934.1 \pm 3933$   |                  | ***            | SSRQ          | $2.28 \pm 0.12$ | 3 ED  |
| 3C 264            | J1145.1 + 1035       |                  | 0.1.4          | FRI           | $1.98 \pm 0.20$ | JER   |
| 4C +04.40 J1205.4 | $J1205.4 \pm 0.0012$ |                  | ··· SSRQ       | 2.64±0.16 g c | 8 55            |       |
| M87               | J1230.9+1224         | J1230.8+1224     | J1230.8+1223   | FRI           | $2.04 \pm 0.07$ | 0.00  |
| 3C 275.1          | J1244.1+1615         |                  |                | SSRQ          | $2.43 \pm 0.17$ |       |
| Cen A Core        | J1325.4-4301         | J1325.6-4300     | J1325.6-4300   | FRI           | $2.70 \pm 0.03$ |       |
| 3C 286            | J1330.5+3023         |                  | +++            | SSRQ/CSS      | $2.60 \pm 0.16$ |       |
| Con B             | J1346.6-6027         | J1346.6-6027     |                | FRI           | $2.32 \pm 0.01$ |       |
| 3C 303            | J1442.6+5156         | ***              |                | FRII          | $1.92 \pm 0.18$ |       |
| NGC 6251          | J1630.6+8232         | J1629.4+8236     | J1635.4+8228   | FRI           | $2.22 \pm 0.08$ |       |
| 3C 380            | J1829.6 + 4844       | J1829.7+4846     | J1829.8+4845   | SSRQ/CSS      | $2.37 \pm 0.04$ |       |
| Circinus          | J1413.2-6518         | (J1415.7-6520)   |                | Seyfert       | $2.43 \pm 0.10$ |       |
| ESU 323-G77       |                      | J1306.9-4028     | J1307.0-4030   |               |                 |       |
| 3C 120            |                      | 1.11             |                | FRI           |                 |       |
| 3C 407            | ***                  | J2008.6-0419     | J2008.6-0419   |               |                 |       |
| NGC 6951          |                      |                  | J2038.1 + 6552 | go            | ne sour         | ces   |
| NGC 6814          |                      | J1942.5-1024     |                |               |                 |       |

+ five NLSyl

CSS: compact steep spectrum SSRQ: steep-spectrum radio source

![](_page_46_Figure_0.jpeg)

## Summary

- Fermi sensitivity is being better; compatible with CTA. ---- PASS-8, Increasing Photon Statistics
- Fermi-LAT Catalogs based on all-sky survey are very useful for CTA.
- Finding transient objects with Fermi-LAT are also important to trigger MW obs. with CTA.