

Probing the origin of UHECRs with neutrinos

The connection of neutrinos to ultra-high energy cosmic rays

Shigeru Yoshida Department of Physics ICEHAP, Chiba University

UHECRs

The Neutrino Flux: overview

The Cosmic Neutrinos Production Mechanisms

The IceCube Neutrino Observatory

University of Alberta-Edmonton
University of Toronto

USA

Clark Atlanta University Drexel University Georgia Institute of Technology Lawrence Berkeley National Laboratory Massachusetts Institute of Technology Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls Yale University

Chiba University, Japan

elgium

Niels Bohr Institutet,

Denmark

Sungkyunkwan University, Korea

University of Oxford, UK

Université Libre de Bruxelles Université de Mons Universiteit Gent Vrije Universiteit Brussel

Sweden

Stockholms universitet Uppsala universitet

Germany

Deutsches Elektronen-Synchrotron Friedrich-Alexander-Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Ruhr-Universität Bochum RWTH Aachen Technische Universität München Technische Universität Dortmund Universität Mainz

Universität Wuppertal

Université de Genève, Switzerland

University of Adelaide, Australia

University of Canterbury, New Zealand

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Summary of LECLEE the IceCube Diffuse Flux measurements

ICECUBE

UHE v search with 6 year long data

PeV

"IC40" 2008-2009 354.8 day

TeV

"IC59" 2009-2010 342.8 day "IC79" 2010-2011 312.5 day

"IC86" 2011-<mark>2014</mark> 1031.8 day

EeV

UHE (PeV-EeV)

PeV

EeV

Detection Principle – <u>All flavor</u> sensitive

ICECUBE

TeV

Event Distribution on

Pe∖

NPE("brightness" ~ "Energy") Vs cos(zenith) plane

EeV

The ν detection effective area

PeV

PeV < E < 10 PeV</th> V_e sensitive100PeV < E</td> V_{μ} V_{τ} sensitive

EeV

PeV

EeV

ICECUBE

Expected Signal Event Distribution with GZK-type of spectra

The main energies : EeV (=1000 PeV)

12

Open the box : What we found No EeV events but a ~ PeV-Energy cascade

(Probably) the most energetic upgoing event detected by IceCube

What is this event?

The preliminary analysis tells...

TeV

This is not the atmospheric background

The background-only hypothesis rejected by ~2.45 σ

This is not the GZK cosmogenic $\boldsymbol{\nu}$

The GZK hypothesis rejected by ~2.41 σ favoring ~ E⁻² type of spectrum

A sort of similar situation when the UHE search found two PeV-Energy events in 2012

Ee\

A part of the sub PeV cosmic neutrino bulk?

up-going $\nu_{\!_{\mu}}$ flux detected by IceCube

 $E^2 \phi(E) \approx 8 \times 10^{-9} \text{ GeV/cm}^2 \text{sec sr}$

A part of the sub PeV cosmic neutrino bulk?

P₂\

consistent but <u>must have</u> <u>a cutoff energy</u>

EeV

Preliminary

The Score Board

EeV

Many EeV-energy v models are excluded

PeV

v Model	GZK Y&T m=4,zmax=4	GZK Ahlers Best Fit 10EeV	GZK Ahlers Best Fit 1EeV	GZK Kotera _{SFR}	GZK Aloisio _{SFR}	AGN Murase γ=2.0 Load.fac 10	Young Pulsar Ke+ Uniform
Expect. # of events	5.8	4.4	2.3	3.0	3.9	12.3	3.6
Model Rejection Factor	0.38	0.51	1.01	1.15	0.81	0.29	0.90
p-value	4.0x10 ⁻³	1.4x10 ⁻²	1.2x10 ⁻¹	1.6x10 ⁻¹	5.1x10 ⁻²	<1.0x10 ⁻³	7.9x10 ⁻²

TeV

Mildly Excluded

The Cosmic Neutrinos Production Mechanisms

On-source ν models

AGN model: Murase, Inoue, Dermer, PRD 2014 Pulsar model : Ke, Kotera, Olinto, Murase, PRD 2014

GZK cosmogenic v models

Tracing *history* of the particle emissions with v flux

color : emission rate of ultra-high energy particles

0.2

0

0.6

0.4 log(1+z) 0.8

$\begin{array}{l} \textbf{Ultra-high energy } v \text{ intensity} \\ \textbf{depends on the emission rate in far-universe} \end{array}$

Yoshida and Ishihara, PRD <u>85</u>, 063002 (2012)

more than an order of magnitude difference

GZK cosmogenic v intensity @ 1EeV in the phase space of the emission history

Yoshida and Ishihara, PRD <u>85</u>, 063002 (2012)

UHECR source is cosmologically LESS evolved

EeV

even SFR history is more evolved than UHECR emission

Model dependent constraints

The GZK ν models assuming proton-dominated CRs

only very weak evolution scenario is allowed

The model-independent upper limit on flux

PeV

EeV

Conclusion

No EeV v's, only a (sub-)PeV-energy event seen in IceCube 6 year data

- AGNs are NOT the UHECR origin
- Pulsars are **NOT** the UHECR origin
- Any sources following SFR or stronger evolution are NOT the UHECR origin (ex GRB) unless EBL is dimmer than we think

Theorists, tell me what!

OR

UHECRs are not proton-dominated Auger is right

We still have a clue Beyond-PeV v sky is not completely dark

UHE (PeV-EeV)

P₂\

Online Analysis for γ -ray/optical follow-up

new

event topology separation

track

EeV

cascade (non track-like)

UHE (PeV-EeV)

Online Analysis for γ -ray/optical follow-up

P₂\

We will send you:

- direction
- Energy (proxy)
- rating of signal-likelihood
- 0.7 event/year for $V_{e+\mu+\tau}$ of $E^2\phi = 5x10^{-9}GeVm^{-2}sec^{-1}sr^{-1}$ GZK: ~ 0.3-0.9 event/year BG: ~ 2.76 event/year

$\Delta \theta$ ~0.25 deg

EeV

IceCube Realtime Analysis Chain

IceCube Realtime Analysis Chain

Will start sending v alerts to the MoU-singed observatory this year!

Northe VVIPAC Wisconsin IceCube Particle Astrophysics Center

O(1-2days)

refined results from iterated reconstructions