Exploring the Galaxy at VHEs with H.E.S.S.

P. Bordas (MPIK Heidelberg, Germany) for the H.E.S.S. Collaboration

The Physical Society of Japan
Autumn Meeting
Osaka, September 2015

Exploring the Galaxy at VHEs with H.E.S.S.

outline

- the H.E.S.S. telescopes
- Galactic highlights
- H.E.S.S. - I
- H.E.S.S. - II
- summary

the VHE window

Energy (eV) $10^{-6} 10^{-5} \quad 10^{-4} 10^{-3} 10^{-2} \quad 10^{-1} \quad 1$

Gamma-rays

VHEs

The Cherenkov technique in a nutshell

The stereo Cherenkov technique in a nutshell

The High Energy Stereoscopic System of Cherenkov telescopes

H.E.S.S. phase I (2002-2013)

Technical specs: snapshot
Telescopes: 4
Mirrors: 12 m diameter
Area: $107 \mathrm{~m}^{2}$
FoV: $\sim 5^{\circ}$ diameter
Camera: 960 pixels (PMTs)
Angular resolution $\geq 0.06^{\circ}\left(5^{\prime}\right)$
Electronics: fast ~ 1 ns
Energy range: ~100 GeV to ~100 TeV
Energy resolution ~15\%
Background rejection > 99\%
Duty cycle 10\%

The High Energy Stereoscopic System of Cherenkov telescopes

H.E.S.S. I highlights

HESS Galactic Plane Survey

$\bullet>2800 \mathrm{~h}$ obs (2004-2013), $65^{\circ}<1<250^{\circ}$, $\mathrm{Ibl}<3.5^{\circ}$, [0.2-100] TeV, ~2\% Crab, 77 sources

H.E.S.S. I highlights

HESS Galactic Plane Survey

- adaptive ring bkg estimation with exclusion region masks

Galactic Longitude (deg)

- semi-automated, MLE-based source detection \& morphology fitting
- model sources as Gaussian plus an underlying "diffuse" component

H.E.S.S. I highlights

HESS Galactic Plane Survey

...featuring:

- H.E.S.S. catalog
- MWL associations

A very hard spectrum TeV gamma-ray source in the Galactic plane

- one of the hardest gamma-ray spectra ever found at VHEs ($\Gamma=2.07$)
- detected only above few TeVs (contamination by nearby HESS J1640)
- no signature of cut-off, pp-preferred... PeVatron? (protons >100 TeV 99\% CL)

First shell-type SNR ever detected in TeV gamma-rays

H.E.S.S. Collaboration (2006)
still, many questions remain...

Fermi-LAT Collaboration (2011)

- spectral cut-off shape? —> electrons vs. protons
- spatially-resolved spectra w/ unprecedented resolution $->$ resolve physical properties
- morphology \& radial profiles + comparison to X-rays $->$ particle diffusion + escape?

H.E.S.S. high-precision measurements of RXJ1713-3946

H.E.S.S. Collaboration (2015, in prep.)

- exposure: 170 h
- angular resolution: 0.05 deg
- energy threshold: 250 GeV

Spectral Model	Γ	$E_{\text {cut }}$ (TeV)	$F(>1 \mathrm{TeV})$ $\left(10^{-11} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	χ^{2} / ndf
$F_{0} E^{-\Gamma}$	2.32 ± 0.02	-	1.52 ± 0.02	$304.2 / 118$
$F_{0} E^{-\Gamma} \exp \left(-\frac{E}{E_{\text {cut }}}\right)$	2.06 ± 0.02	12.9 ± 1.1	1.64 ± 0.02	$120 / 117$
$F_{0} E^{-\Gamma} \exp \left(-\frac{E}{E_{\text {cut }}}\right)^{2}$	2.17 ± 0.02	16.5 ± 1.1	1.63 ± 0.02	$113.8 / 117$
$F_{0} E^{-\Gamma} \exp \left(-\frac{E}{E_{\text {cut }}}\right)^{0.5}$	1.82 ± 0.04	2.7 ± 0.4	1.63 ± 0.02	$142.1 / 117$

H.E.S.S. high-precision measurements of RXJ1713-3946

- use X-rays (XMM-Newton) convolved with HESS-PSF
- 24 regions defined, derivation of B-field in a synchrotron (X-ray) scenario

H.E.S.S. high-precision measurements of RXJ1713-3946

H.E.S.S. I highlights

The Fermi-LAT and H.E.S.S. Views of the Supernova Remnant W49B

Fermi-LAT and H.E.S.S. Collaboration (2015, in prep.)

- H.E.S.S.:
- 75h live-time (2004-2013, no CT5)
- Model analysis, std cuts (Eth $\sim 290 \mathrm{GeV}$)
- W49B detected at 12.9 σ stat. level
- morphology: point-like (PSF ~ shell size)
- Fermi-LAT:
- 5 years of data (Pass7)
- morphology: point-like (PSF ~ shell size)
- slight offset position w.r.t. H.E.S.S

HESS J1534-571

HESS J1912+101

H.E.S.S. Collaboration (2015, in prep.)

- goal: extend small population of known TeV shells
- some sources may be faint in X-rays (intrinsically or due to absorption) -shell morphology: particles confined - albeit high-E may have escaped
- method: look for new shell candidates in the HGPS
- results: two new shell-candidates resolved, few more candidates...

H.E.S.S. Observations of the LMC

PWN N157B:

- Crab LMV "counter-part"
- but lower B-field ($45 \mu \mathrm{G}$) and efficiency
- no GeV emitter (so far)

30 Dor C

- $1^{\text {st }}$ detection superbubble in γ-rays
- shell-bright in X-rays, TeV also there?

N 132D

- one of oldest TeV emitting SNRs
- first individual cosmic-ray sources in external galaxy \rightarrow Science 347:6220 (2015)
- just the "tip of the iceberg"? -> future observations with CTA

Pulsations from the Vela Pulsar down to 20 GeV with H.E.S.S. II

- High significance detection of the P2 pulse from the Vela PSR with H.E.S.S.II
- CT5 able to operate down to 20 GeV
- Excellent agreement with Fermi-LAT: crosscalibration check for CT5

H.E.S.S. Collaboration (2015, in prep.)

Observations of Sgr A* with H.E.S.S. II

- GC with the H.E.S.S. II array down to $\sim 100 \mathrm{GeV}$
- Detection of central source (40б), PWN G0.9+0.1, HESS J1745-303 + diffuse emission
- smooth continuation from spectrum seen in H.E.S.S. I
- E-threshold not low-enough to fully describe Fermi-LAT-H.E.S.S. spectral break
- +50h obs. time coming soon (blinded for dark matter searches...) vs 58h so far...

PSR B1259-63: a pulsar Y-ray binary system

- pulsar (P 48ms, $\left.L_{\text {sd }}=8 \times 10^{35} \mathrm{erg} / \mathrm{s}\right)+09.5 \mathrm{Ve} \operatorname{star}\left(\mathrm{L}_{\text {star }}=2.3 \times 10^{38} \mathrm{erg} / \mathrm{s}\right)+$ circ. disk
- binary system: $\mathrm{D}=2.3$, P orb $=3.4$ years, eccentricity $=0.87$, orbital inclination $\mathrm{i} \sim 24^{\circ}$
- variable/periodic emission in radio, optical, X-rays, GeV and TeV y-rays
- pulsations seen only in radio (and away from periastron)
- GeV flare in 2011; happening again in 2014

PSR B1259-63, credits: NASA archive

H.E.S.S. Observations of PSR B1259-63 during its 2014 periastron passage

H.E.S.S. II highlights

H.E.S.S. Observations of PSR B1259-63 during its 2014 periastron passage

- analysis of both 2014 and previous data with new software tools
- confirmed double-peak pattern observed in the long-term light curve
- Local minimum at the periastron passage
- Source still active at VHEs at 40-50 days after periastron
- Differences between light curves w.r.t previous periastron events

H.E.S.S. II highlights

H.E.S.S. Observations of PSR B1259-63 during its 2014 periastron passage

- Comparison of results from
H.E.S.S., Fermi-LAT and Swift-XRT simultaneous observations
- X-rays: highest-ever flux recorded in 2014 (2nd disk crossing). Hints of variability during GeV flare?
- Fermi-LAT: reappearance of the gamma-ray flare (slight differences), marked variability
- H.E.S.S. (CT5): high emission state at VHEs during the GeV flare

H.E.S.S. II highlights

LS 5039: the "swiss-clock" gamma-ray binary

- First binary @ TeV (Aharonian et al. 2005)
- C.O.: 3.7 +/-1.5 Msun, O6.5V companion, Porb=3.9d
- long-term stability at VHEs (the exception)
- illustrates variability in VHE light-curves and spectra

H.E.S.S. Collaboration $(2005,2006)$

LS 5039 - update of H.E.S.S - I data-set (2006-2012)

- excellent agreement with 2006 published results (swiss-clock)
- detection in every orbital phase (0.1 width)
- spectral features in some phase-bins
- broken PL preferred for INFC w.r.t. exp-cutoff-PL

P. Bordas, HESS Galactic, JPS-2015

H.E.S.S. II highlights

LS 5039 - new H.E.S.S - II observations (2013-2015)

H.E.S.S. Collaboration (2015, in prep.)

- about 14h live-time (more in 2015), >10 \quad detection (stereo and mono)
- spectrum down to 120 GeV with only 14 h obs. time! (can go lower)
- First gamma-ray binary with real Fermi-LAT/H.E.S.S. overlap
- so far compatible within errors: existence of a break at 100 GeVs ?

Summary (I)

- 12 years of extremely successful H.E.S.S. operations
> effectively opening up the VHE window as a new astro-particle physics discipline
> constraining the origin of Galactic cosmic-rays
- testing the paradigm of SNRs: spectral cutoffs at TeV energies
- through single new accelerators + diffuse emission: PeVatrons!
> revealing VHE properties in powerful Galactic accelerators:
- properties of SNRs, PWNs, binaries, stellar-clusters... at the highest energies
- yet many unidentified -> discovery of new source types?

Summary (II)

- H.E.S.S.-II in operation since 2013
> first true "hybrid system" of Cherenkov telescopes (rather challenging!)
> lowering E-threshold down to $\sim 50-100 \mathrm{GeV}$
- entering the Fermi-LAT regime (but with 10^5 times collection area)
- well-suited for variable phenomena (~hours-days) given high-statistics
- no real analog system in the horizon: CTA offers 24 m , northern hemisphere
- hardware/software can be further improved => a true transients hunter!

P. Bordas, HESS Galactic, JPS-2015

BACKUP

