Exploring the Galaxy at VHEs with H.E.S.S.

P. Bordas (MPIK Heidelberg, Germany) for the H.E.S.S. Collaboration

The Physical Society of Japan Autumn Meeting Osaka, September 2015

Exploring the Galaxy at VHEs with H.E.S.S.

outline

- the H.E.S.S. telescopes
- Galactic highlights
 - H.E.S.S. I
 - H.E.S.S. II
- summary

The Cherenkov technique in a nutshell

The stereo Cherenkov technique in a nutshell

Technical specs: snapshot

Telescopes: 4 Mirrors: 12 m diameter Area: 107 m² **FoV: ~5° diameter** Camera: 960 pixels (PMTs) Angular resolution $\ge 0.06^{\circ}$ (5') Electronics: fast ~1 ns Energy range: ~100 GeV to ~100 TeV Energy resolution ~15% Background rejection > 99% Duty cycle 10%

The High Energy Stereoscopic System of Cherenkov telescopes

• >2800h obs (2004-2013), 65° < / < 250°, 1*b*l < 3.5°, [0.2 - 100] TeV, ~2% Crab, 77 sources

- adaptive ring bkg estimation with exclusion region masks
- semi-automated, MLE-based source detection & morphology fitting
- model sources as Gaussian plus an underlying "diffuse" component

P. Bordas, HESS Galactic, JPS-2015

- one of the hardest gamma-ray spectra ever found at VHEs (Γ = 2.07)
- detected only above few TeVs (contamination by nearby HESS J1640)
- no signature of cut-off, pp-preferred... PeVatron? (protons >100 TeV 99% CL)

H.E.S.S. Collaboration (2006)

Fermi-LAT Collaboration (2011)

still, many questions remain...

- spectral cut-off shape? —> electrons vs. protons
- spatially-resolved spectra w/ unprecedented resolution —> resolve physical properties
- morphology & radial profiles + comparison to X-rays —> particle diffusion + escape?

H.E.S.S. high-precision measurements of RXJ1713-3946

H.E.S.S. Collaboration (2015, in prep.)

- exposure: 170 h
- angular resolution: 0.05 deg
- energy threshold: 250 GeV

H.E.S.S. high-precision measurements of RXJ1713-3946 The X-ray hotspots

H.E.S.S. high-precision measurements of RXJ1713-3946

P. Bordas, HESS Galactic, JPS-2015

The Fermi-LAT and H.E.S.S. Views of the Supernova Remnant W49B

Fermi-LAT and H.E.S.S. Collaboration (2015, in prep.)

- H.E.S.S.:
 - 75h live-time (2004-2013, no CT5)
 - *Model* analysis, std cuts (E_{th} ~ 290 GeV)
 - W49B detected at 12.9 stat. level
 - morphology: point-like (PSF ~ shell size)

, The Fermi-LAT and H.E.S.S. view of the supernova remnant ICRC 2015 - The Hague, 05/08/2015

- Fermi-LAT:
 - 5 years of data (Pass7)
 - morphology: point-like (PSF ~ shell size)
 - slight offset position w.r.t. H.E.S.S

SNRs: new TeV shells

H.E.S.S. Collaboration (2015, in prep.)

- goal: extend small population of known TeV shells
 - some sources may be faint in X-rays (intrinsically or due to absorption)
 - -shell morphology: particles confined albeit high-E may have escaped
- method: look for new shell candidates in the HGPS
- results: two new shell-candidates resolved, few more candidates...

H.E.S.S. Observations of the LMC

PWN N157B:

- Crab LMV "counter-part"
- but lower B-field (45 μG) and efficiency
- no GeV emitter (so far)

30 Dor C

- 1st detection superbubble in γ-rays
- shell-bright in X-rays, TeV also there?

N 132D

- one of oldest TeV emitting SNRs
- first individual cosmic-ray sources in external galaxy \rightarrow Science **347**:6220 (2015)
- just the "tip of the iceberg"? -> future observations with CTA

Pulsations from the Vela Pulsar down to 20 GeV with H.E.S.S. II

- High significance detection of the P2 pulse from the Vela PSR with H.E.S.S.II
- CT5 able to operate down to 20 GeV
- Excellent agreement with Fermi-LAT: crosscalibration check for CT5

H.E.S.S. Collaboration (2015, in prep.)

P. Bordas, HESS Galactic, JPS-2015

Observations of Sgr A* with H.E.S.S. II

- GC with the H.E.S.S. II array down to ~100 GeV
- Detection of central source (40σ), PWN G0.9+0.1, HESS J1745-303 + diffuse emission
- smooth continuation from spectrum seen in H.E.S.S. I
- E-threshold not low-enough to fully describe Fermi-LAT-H.E.S.S. spectral break
- +50h obs. time coming soon (blinded for dark matter searches...) vs 58h so far...

PSR B1259-63: a pulsar γ-ray binary system

- pulsar (P 48ms, L_{sd}= 8 ×10³⁵ erg/s) + O9.5Ve star (L_{star}= 2.3 × 10³⁸ erg/s) + circ. disk
- binary system: D = 2.3, P_{orb}= 3.4 years, eccentricity = 0.87, orbital inclination i ~24°
- variable/periodic emission in radio, optical, X-rays, GeV and TeV γ-rays
- pulsations seen only in radio (and away from periastron)
- GeV flare in 2011; happening again in 2014

PSR B1259-63, credits: NASA archive

H.E.S.S. Observations of PSR B1259-63 during its 2014 periastron passage

H.E.S.S. Collaboration (2015, in prep.)

- Long-term H.E.S.S. monitoring campaign to cover 2014 periastron
- coordination with MWL observatories for simultaneous observations
- More than 57 hours of live-time analysed with STEREO and MONO analysis chains
- Source detected at 40σ level, HESS J1303-638 also detected

H.E.S.S. Observations of PSR B1259-63 during its 2014 periastron passage

- analysis of both 2014 and previous data with new software tools
- confirmed double-peak pattern observed in the long-term light curve
- Local minimum at the periastron passage
- Source still active at VHEs at 40-50 days after periastron
- Differences between light curves w.r.t previous periastron events

H.E.S.S. Observations of PSR B1259-63 during its 2014 periastron passage

- Comparison of results from H.E.S.S., Fermi-LAT and Swift-XRT simultaneous observations
- X-rays: highest-ever flux recorded in 2014 (2nd disk crossing). Hints of variability during GeV flare?
- Fermi-LAT: reappearance of the gamma-ray flare (slight differences), marked variability
- H.E.S.S. (CT5): high emission state at VHEs during the GeV flare

H.E.S.S. Collaboration (2015, in prep.)

LS 5039

LS 5039: the "swiss-clock" gamma-ray binary

- First binary @ TeV (Aharonian et al. 2005)
- C.O.: 3.7 +/-1.5 M_{sun}, O6.5V companion, P_{orb}= 3.9d
- long-term stability at VHEs (the exception)
- illustrates variability in VHE light-curves and spectra

P. Bordas, HESS Galactic, JPS-2015

LS 5039 - update of H.E.S.S - I data-set (2006-2012)

- excellent agreement with 2006 published results (swiss-clock)
- detection in every orbital phase (0.1 width)
- spectral features in some phase-bins
- broken PL preferred for INFC w.r.t. exp-cutoff-PL

LS 5039

LS 5039 - new H.E.S.S - II observations (2013-2015)

H.E.S.S. Collaboration (2015, in prep.)

Summary (I)

- 12 years of extremely successful H.E.S.S. operations
 - > effectively opening up the VHE window as a new astro-particle physics discipline
 - constraining the origin of Galactic cosmic-rays
 - testing the paradigm of **SNRs**: spectral cutoffs at TeV energies
 - through single new accelerators + diffuse emission: **PeVatrons**!

revealing VHE properties in powerful Galactic accelerators:

- properties of SNRs, **PWNs**, **binaries**, **stellar-clusters**... at the highest energies
- yet many unidentified -> discovery of **new source** types?

Summary (II)

- H.E.S.S.-II in operation since 2013
 - first true "hybrid system" of Cherenkov telescopes (rather challenging!)
 - Iowering E-threshold down to ~ 50-100 GeV
 - entering the *Fermi*-LAT regime (but with **10^5 times collection area**)
 - well-suited for variable phenomena (~hours-days) given high-statistics
 - no real analog system in the horizon: CTA offers 24m, northern hemisphere
 - hardware/software can be further improved => a true transients hunter!

BACKUP

