2012.9.12 at 京都産業大

宇宙線観測の歴史

初期の観測を中心に

元東京大学宇宙線研究所 元福井工大宇宙環境情報学科 永野元彦

1

P. Auger, R. Maze et al. 空気シャワーの発見 1938

1938年以前に、霧箱により、 シャワーの写真が撮られていた。 Skobelzyne and Auger

- GM 計数管の分解能msecから µsecに
- Accidental coincidence の減少
- 計数管を150m離しても存在する 同時計数からシャワーの存在
- 建物の天井でなく、上空からきているExtensive air showerであることをつきとめる

1940年代終頃までに高山での観測もおこない 10¹⁵ eV 程度の宇宙線の存在 (一次宇宙線は電子として推定)

P. Auger; Early History of Cosmic Ray Studies (Y.Sekido and H.Elliot eds, D.Reidel Pub. Co)(1985) 213. 3

Pierre Auger

1950年代初の状況

- 一次宇宙線の大部分は陽子
- 炭素,酸素など重い原子核の存在
- 空気シャワーは多重発生による核カスケード
- 三次元電磁カスケード西村・鎌田(N-K)関数
- 電波望遠鏡により銀河磁場の存在
- フェルミ加速

宇宙線のエネルギーの上限は10¹⁵~10¹⁶ eV?

MIT-Agassiz experiment (1954-57) 10¹⁸ eVの宇宙線の観測

B. Rossi

- 1 m²のトルエン・液体シンチレータ15台のアレイ. (出火したためプラスチックシンチレータの開発)
- アナログコンピューターで
 シャワー中心と総粒子数
 到来方向
 の決定

C.W.Clark et al.; Phys. Rev. 122 (1961) 637. First >10¹⁸ eV event 5

 $w^2 = 5 L$

N=1.3×10⁹

N = 5.8 × 10⁹

w2=3.6

= 1.4 × 10⁹ electrons δ = 53° α = 112°

137

•4630

• 380 • 2620

N =1.4 × 109

2× 0.96

R, m

200 m

 $\psi^2 = 14.5$

N = 4 8 × 10⁸

p² = 27

 $N = 7 \times 10^{8}$

N = 1.2×10⁹

 $\psi^2 = 17$

2 = 5

アルバカーキの郊外

Volcano Ranch(1958~1965?)

J. Linsley and L. Scarsi

Plastic scintillator (3.3 m²) 鉛10cmの上下(Lead burger) 約8km²の領域に19台 日よけの藁の中にガラガラ蛇が住み、 見回りは大変危険だったとのこと。

- 1950年 大阪市大観測小屋
- 1950年 朝日新聞社第1回学術奨励金により朝日の観測小屋

主として 宇宙線中の高エネルギー核子による核反応 大型マグネット霧箱による新粒子の探索 宇宙線強度の連続観測(仁科型電離箱、中性子モニターなど)

大盛況で乗鞍宇宙線観測所が共同利用研としてできる。

1953年 米国ブルックヘブン国立研究所でコスモトロン(3GeV)が稼動

大型霧箱による空気シャワーの中心部の観測 大型エマルション・チェンバーによる超高エネルギー現象 太陽フレアーにともなる高速中性子 宇宙線強度の連続観測(仁科型電離箱、中性子モニターなど)

Tokyo – INS (1956~1975) 共同利用研究所

ンチレーション 検出器

データ記録室

- プラスチックシンチレーター検出器
 ニュン検出器(地工に)
- ミューオン検出器(地下5m, 15m)
 霧箱
- ・ 鉛ガラス・エネルギーフロー検出器
- ネオン・ホドスコープ
- クロノトロンによるFast Timing
- ・ パラメトロン自動記録装置
- ・ パラメトロン計算機

EASを総合的に解析する、当時の技術を 集めた画期的空気シャワー観測装置

━━━ 高山ー次ガンマ線観測へ

double core や

ネオンホドスコープ

解像度をあげる

1959 Fukui and Miyamoto Spark Chamber の発明

S.Fukui and S.Miyamoto; Nuovo Cimento XI (1959) 113

加速器実験 衛星でのガンマ線観測 等 必要不可欠の検出器として発展 9

ガンマ線観測事始 BASJE (1962~ (Bolivia Air Shower Joint Experiment) チャカルタヤ山 1963 5200m 20 菅浩一 60 120 180 240 300 360 RIGHT ASCENSION 60トンのガレナ ャワーの選択条件 を積み上げる コア距離<8m ∑e>5000 ∑µ=0 >3000 8-20m \$ \$ >20ml >3000 µ less shower

検出器

4σ K. Kamata et al.; Can. J. Phys., 10 46 (1968) S72.

Double core 大p_tの存在とp_t分布

T. Matano et al.; Can. J. Phys., 46 (1968) S56

M. Nagano and S. Shibata; J. Phys. Soc. Japan, 20 (1965) 685

ネオンホドスコープ

HASの 観測 結果 は T.Hara et al.; Acta Phys. Acad. Sci. Hungaricae, 29 Suppl. 4 (1979)125.

蛍光観測法

乗鞍シンポジウム 1958

村山喬;宇宙線研究 3, No.5 (1958) 449

- K.Suga and G.Tanahashi 原子核研究所サイクロトロンでシンチ レーション効率を測定(1960) 320nm以上、1気圧で 9.5 photons/MeV loss
 - 菅浩一; 第5回宇宙空間科学研究会 (1964.7.11)
- K.Suga, A.Chudakov

5th Interamerican Seminar at

Bolivia (1962)

蛍光法による観測法の具体的議論

K. Suga; Proc. 5th Inter. American Symp., La Paz, eds I. Escobar et al., 2 (1962) XLIX-1-5.

コーネル大学の観測 1962~1969(?)

Tanahashi 等

堂平山での観測 1968~1969

T. Hara et al.; Acta Phys. Acad. Sci. Hung. 29 (1970) 369.

4

1973年から技術開発 1976年にVolcano RanchでAir Shower Arrayと連動実験

Fly's Eye 1981-1993

高エネルギー ミューオンの観測

ー次粒子の エネルギー分布 重発生 客 K/ 77 未知のミュー粒子の生成 斜入射 11+1 JE 地上の ミュー粒子 エネルギー分布 電磁過程 核相互作用

777

電磁相互作用

北村,小早川,美甘;日本物理学会誌 v.29 (1974) 514

1次宇宙線の化学組成は100TeVまでTeV領域と変わらない. ミューオンの異常相互作用は20TeVまで認められず.

S.Matsuno et al.; Phys. Rev. D 29 (1984) 1 A.Okada et al.; Fortschritte der Physik, 32 (1984)135

KGF (OCU三宅グループ and Tata Inst.)

三宅三郎; µ中間子とニュートリノ,「宇宙線研究」(武谷三男編, 岩波書店)(1970)137

N. Ito (India-Japan Collaboration); Proc. Int. Sympo. on Underground Phys. Exp., (1990) 101.

Ramond Davis Jr. 1966頃から約30年 Homestake Gold Mine Neutrino Experiment

1963 石灰岩の鉱山、地下690m での実験。ここで技術を確立

http://www.bni.gov/bnlweb/raydavis/

高エネルギー・ニュートリノ天文の草分け DUMAND 計画 (Deep Underwater Muon and Neutrino Detection) 1989年 米、日、スイスでDUMANDIIの予算承認 1993年 1本のstringが設置されたが、JBで漏電 4.8 Km 好了 ハワイト があり、データがとれず. ~ 500 氯压 1973年 Point Laborator DUMAND I **Denver ICRC** 1995年米DOEの予算 で提案される. 米、日、ソ連、 が止まり、計画断念 Muon 西独等の研究者 -オン 15"PMT-Electro-Optic Cab が集まり,40m間隔で 1km³の海水中 チェレンコア光 に光センサーを Cerenkov light 配置する計画 **DUMAND 1988 Proposal** を立案 Neutrino 1987年 Kobayakawa Calc (ref. 28)(dashes) 海海へ 船からおろした短いstringに To Shore liyake formula (ref. 29)(solid) (cm) 强 10-7 つけた7個のセンサーで (30 km) 深さ4500mまで沈め、 Fiber cable 4800m depth O Higashi muonのdepth-intensityを 10-8 =2-トリノ+ 陽32は → ミューオン + X (anything) 中た3 タエレンコア光 U Vavilov 測定 # Fyodorov M. Barone: Nucl. Phys. B (Proc. Suppl.) 44 (1995) 186 J. Babson et al.; Phys. Rev. D 42 (1990) 3613 Depth (km we) DUMANDのHardwareはNESTOR計画へ

1950年はじめに銀河磁場の存在が明らかになり、荷電宇宙線では源を 探索できない。頻度は少ないがガンマ線で探ろうという計画 →→→ 英国のJelleyやアイルランドのPorter等

Atmospheric Cherenkov Technique (ACT)

- 1953 Galbraith and Jelley: EAS からの Cherenkov light pulses を観測 at Pic du Midi
- 直径25cmのsearch light mirror の焦点に直径5cmのPMT: 4台
- 面積200cm²のGM counter 4個の トレイ ; 5 トレイ
- これらの同時観測で、受光シグナ ルの偏光と分光特性がチェレンコ フ光としての予測と一致することを 示す
- EASのエネルギーは約10¹⁴ eV

1963年に発表されたImage Intensifierで撮像されたEASのCherenkov Image J.V. Jelley and N.A. Porter; Quart J. Roy. Astron. Soc., 4 (1963) 275

最初のVHEγ線(TeV)探索

 1960~1963 Chudakov et al. : (>4TeV) at Crimea
 1.5 mΦ×12
 Crab Nebula, CasA, CygAからの上限値

A.E. Chudakov et. al.; Transl. Consultants Bureau, P.N. Lebedev Phys. Inst., 26 (1965) 99.

陽子のバックグランドが多すぎる! 如何にして減らすか。 **1**963

Jelley and Porter: ガ ンマ線点源の観測にImage Intensifierによる imageを使うこと を提唱

J.V. Jelley and N.A. Porter; Quart. J. Roy. Astron. Soc., 4 (1963) 275.

1963 BASJEでガンマ線観測開始

1962 最初のガンマ線衛星 Explorer X1 9時間で, 22 ガンマ線を観測 (>50 MeV) W.L. Kraushaar and G.W. Clark; Phys. Rev. Lett., 8 (1962) 106.

それぞれの観測で、点源観測の 報告があるが、確証はなし.

初期のACT

Porter, Weekes 等 1975 > 0.2TeVで、Crab, Velaなど上限

Turning point 1980-1983 VHE gamma-ray emission from Cyg X-3

ACT around 1985

#	Location	Country		Location			nap.,	
			Organization	Lat. (deg)	Long. (deg)	Elev. (km)	Energy (TeV)	Operational
	Potchefstroom	South Africa	Potchefstroom	-27	27E	1.4	1	1985
,	White Cliffs	Australia	Adelaide	-32	143E	0.16	1	1986
	Narrabri	Australia	Durham	-31	145E	0.21	0.3	1986
	Haleakala	USA		27	156 V	3.0	0.5	1985
	Albuquerque	USA	Rivinid	5	107 N	1.5	0.2	1986
	Mt. Hopkins	USA	Smithsonian	32	111W	2.3	0.3	1983
	Themis	France	Saclay	43	1W	1.5	0.1	1986
	Crimea	USSR	Crimean Astrophys. Obs.	45	34E	2.1	1	1986
	Pachmarchi	India	Tata	23	78E	1.1	0.5	1987
	Gulmarg	India	Tata	35	77E	2.7	1	1985
	Beijing	China	Acad. Sinica	40	117E	1.0	1	1987
	Delingha	China	Acad. Sinica	37	97E	3.2	1	1990

Table 21a Very high energy gamma-ray exeriments (atmospheric Cherenkov)

T. C. Weekes; Phys. Report 160 (1988) 1.

Particle arrays and Cherenkov Detector arrays around 1985

Table 21b Ultra high energy gamma-ray experiments (atmospheric Cherenkov and particle arrays)										
#		Country	Organization		Location					
	Location			Lat. (deg)	Long. (deg)	Elev. (km)	Energy (PeV)	Angular resolution (deg)	Operational	
1	Buckland Park	Australia	Adelaide	-35	138E	S.L.	1	2.5	1984	
2	Mt. Chacaltava	Bolivia	"BASJE"	-16	68W	5.2	0.2	1	1986	
3	Mt. Chacaltava	Bolivia	SYS Collab.	-16	68W	5.2	0.2	3	1986	
4	Haverah Park	UK	Leeds	54	1W	S.L.	1	1	1986	
s	Dugway	USA	Utah	40	112W	1.5	0.1	0.5	1989	
6	Los Alamos	USA	Dos Alamos	36	106W	2.1	0.2	1	1986	
7	Mt Honkins	USA	Jublin	104	111W	1.3		Q	1985	
R	La Palma	Germany	Kiel	29	18W	2.2		.	1986	
0	Gran Sasso	Italy	Turin	42	14E	2.0	0.01	1	1988	
ń	Plateau Rosa	Italy	Turin	46	8E	3.5	0.01	5.5	1981	
r I	Mt Aragats	USSR	Erevan	40	44E	3.2	0.1	1	1987	
2	Tien Shan	USSR	Lebedev	42	75E	3.3	0.1	3	1974	
3	Moscow	USSR	Moscow	56	37E	S.L.	1	3	1982	
4	Baksan	USSR	Nucl. Sci.	43	43E	1.7	0.3	1	1984	
5	Akeno Ranch	Japan	Tokyo	35	138E	0.9	1.0	3	1981	
6	Mt Norikura	Japan	Tokyo	36	137E	2.8	0.1	1	1988	
7	Ooty	India	Tata	11	77E	2.2	0.1	2	1984	
8	Kolar	India	Tata	13	78E	0.9	1	1.5	1984	
10	South Pole	Antarctica	Bartol	-90	0	2.5	0.1	1	1988	

T. C. Weekes; Phys. Report 160 (1988) 1.

Use of the images of Cherenkov light to reject background events

T. C. Weekes; Phys. Report 160 (1988) 1.

