Solar Neutron Events Associated with Large Solar Flares in Solar Cycle 23 第23太陽活動期に観測された太陽中性子イベント

名古屋大学太陽地球環境研究所 渡邊 恭子

- 一目次一
- ・ はじめに
- 太陽中性子観測装置
- 第23太陽活動期に観測された太陽中性子イベント
 2003年10月28日: Tsumeb 中性子モニター
- 太陽中性子イベントの傾向
- まとめ
- 最新太陽中性子イベント:2005年9月7日

日本物理学会第61回年次大会 @ 愛媛大学·松山大学 2006/3/29

TRACE

(Tsuneta, 1996; Shibata, 1996)

✓ 電子加速・・・制動放射 X線・γ線
 ✓ イオン加速・・・核γ線・中性子

太陽フレア現象におけるイオン加速機構の解明

太陽フレア現象により イオンが加速 加速イオンと太陽大気 との相互作用 太陽中性子·核 γ 線 時刻 ・エネルギー 方向 磁場の影響を受けずに まっすぐ地球に到達

ガンマ線スペクトル @ 太陽フレア

太陽フレアガンマ線観測衛星

- 1980 1989 SMM/GRS
- 1991 2000 CGRO/BATSE, COMPTEL, OSSE, EGRET
- 1991 2000 Yohkoh/SXT,HXT,GRS
- 2001/07/30 CORONAS-F
- 2002/02/05 RHESSI
- 2002/10/17 INTEGRAL
- GEOTAIL/LEP
- ・すざく/HXD-WAM

ガンマ線スペクトル @ 太陽フレア

太陽中性子観測の歴史

1951年 太陽中性子は地球近傍で観測可能 Biermann et al. (1951) 1980年6月21日 SMM/GRS 1982年6月03日 SMM/GRS & Jungfraujoch neutron monitor

粒子加速モデル

• 統計加速 (Miller et al., 1990; Ramaty & Murphy, 1987)

$$\frac{dN}{dE} = \frac{6q}{p_0 c \alpha} I_2(x_0) K_2(x) \qquad (E_0 < E << mc^2)$$

$$\frac{dN}{dE} = \left[\frac{3q}{\alpha E_0 (9 + 12/\alpha T)^{1/2}}\right] \left(\frac{E}{E_0}\right)^{\frac{1}{2} - \frac{1}{2}(9 + 12/\alpha T)^{1/2}} \qquad (mc^2 << E_0 < E)$$
ベッセル関数

・ショック加速 (Ellison & Ramaty, 1985)

$$\frac{dN}{dE} \propto n_0 (E_0^2 + 2E_0 m_0 c^2)^{3/[2(r-1)]} \times (E^2 + 2Em_0 c^2)^{\Gamma}$$
$$\Gamma = \frac{1}{2} \frac{r+2}{r-1} \quad (E_0 < E < mc^2)$$
$$\Gamma = \frac{r+2}{r-1} \quad (mc^2 < < E_0 < E)$$

- DC加速
- 共鳴加速etc.

太陽中性子のスペクトル(太陽表面)

太陽中性子観測装置

- •太陽中性子望遠鏡
- ・ニュートロンモニター
 - ・宇宙線変動観測装置
 ・エネルギー測定不可能 太陽表面での中性子 発生時刻を仮定

 ↓

 TOF法を用いて エネルギー測定可能

http://ulysses.uchicago.edu/NeutronMonitor/

太陽中性子望遠鏡国際ネットワーク

過去に地上で観測された 太陽中性子イベント

Data	Time	Obconvetory	X-ray	Sunspot
Date	[UT] UDServatory	class	Location	
1982/06/03	11:43	Jungfraujoch	X 8.0	S09 E72
1990/05/24	20:48	Climax	X 9.3	N36 W76
1991/03/22	22:44	Haleakara	X 9.4	S26 E28
1991/06/04	03:37	Mt.Norikura	X12.0	N30 E70
1991/06/06	00:58	Mt.Norikura	V12 0	N33 E44
		Haleakara	X12.0	

第23太陽活動期に観測された 太陽中性子イベント

- 2000年11月24日 14:51UT X2.3 (Watanabe et al., ApJ, 2003)
 Chacaltaya (Bolivia) ニュートロンモニター
- 2001年08月25日 16:23UT X5.3 (Watanabe et al., ICRC, 2003)
 Chacaltaya (Bolivia) ニュートロンモニター
- 2003年10月28日 9:51UT X17.2 (Watanabe et al., ApJ, 2006; Birber et al., 2005, GRL) Tsumeb (Namibia) ニュートロンモニター
- 2003年11月02日 17:03UT X8.3 (Watanabe et al., ASR, ICRC, 2005)
 Chacaltaya (Bolivia) ニュートロンモニター
- 2003年11月04日 19:29UT X28 (Watanabe et al., ASR, ICRC, 2005; ApJ, 2006) Haleakala (Hawaii) ニュートロンモニター

2003/10/28 太陽フレア

GOES : X17.2/4B start - 09:51 UT max - 11:10 UT end - 11:24 UT Region: 486 (S16 E08)

Solar Cos(ZenithAngle)

• air mass : 902 g/cm²

2003年10月28日 Tsumeb Neutron Monitor

11:05 UT に る 関数的に太陽中性子が発生したと仮定 太陽中性子のエネルギー:>100MeV

太陽表面上での太陽中性子のスペクトルを求める

・中性子大気減衰率: Shibata program (Shibata et al., 1994)
・中性子モニター検出効率: Clem & Dorman (2000)

第23太陽活動期に観測された 太陽中性子イベント

Date Time [UT] O	Time	Obconvotory	X-ray	Sunspot
	Observatory	class	Location	
2000/11/24	14:51	Chacaltaya	X2.3	N22 W07
2001/08/25	16:23	Chacaltaya	X5.3	S17 E34
2003/10/28	09:51	Tsumeb	X17.2	S16 E08
2003/11/02	17:03	Chacaltaya	X8.3	S14 W56
2003/11/04	19:29	Haleakala	X28	S19 W83

- ・ 強い強度の γ 線が衛星で観測
- ・太陽中性子がγ線の発生時刻に同時に発生と仮定
 ⇒ 太陽中性子のスペクトルはべき関数

太陽中性子イベント (neutron monitor)

Dato	Time	Obsorvatory	X-ray	Sunspot
Dale	[UT]		class	Location
1982/06/03	11:43	Jungfraujoch	X8.0	S09 E72
1990/05/24	20:48	Climax	X9.3	N36 W76
1991/03/22	22:44	Haleakara	X9.4	S26 E28
1991/06/04	03:37	Mt.Norikura	X12.0	N30 E70
1991/06/06	00:58	Mt.Norikura	X12.0	N33 E44
2000/11/24	14:51	Chacaltaya	X2.3	N22 W07
2001/08/25	16:23	Chacaltaya	X5.3	S17 E34
2003/10/28	09:51	Tsumeb	X17.4	S16 E08
2003/11/02	17:03	Chacaltaya	X8.3	S14 W56
2003/11/04	19:29	Haleakala	X28	S19 W83

太陽中性子イベント:エネルギースペクトル

Date	Flare class	Neutron spectrum $\alpha_n = -3 \sim -4$		Flux @ 100MeV [/MeV/sr]
1982/06/03	X8.0	Jungfraujoch	-4.0 ± 0.2	$(2.6\pm0.7)\times10^{28}$
1990/05/24	X9.3	Climax	-2.9 ± 0.1	$(4.3\pm0.4) \times 10^{28}$
1991/03/22	X9.4	Haleakala	-2.7 ± 0.1	$(6.0 \pm 1.0) \times 10^{26}$
1991/06/04	X12.0	Norikura	-4.9 ± 0.6	$(1.9\pm0.2)\times10^{27}$
1991/06/06	X12.0	Norikura	-4.1 ± 1.0	
2000/11/24	X2.3	Chacaltaya	-4.2 ± 0.5	$(4.0\pm1.3)\times10^{26}$
2001/08/25	X5.3	Chacaltaya	-3.1 ± 0.4	$(2.4 \pm 1.3) \times 10^{26}$
2003/10/28	X17.4	Tsumeb	-3.6 ± 0.3	$(3.1\pm1.0)\times10^{27}$
2003/11/02	X8.3	Chacaltaya	-7.0 ± 1.3	$(2.8 \pm 1.6) \times 10^{26}$
2003/11/04	X28	Haleakala	-3.9 ± 0.5	$(1.5\pm0.6) \times 10^{28}$

まとめ

- 第23太陽活動期に発生したXクラスの太陽フレア 約100例について太陽中性子イベントを探索
 - ・5例の太陽中性子イベントが5σ以上の統計的 有意性を持って neutron monitor で観測
 ⇒ 太陽中性子イベント:10例
 - ・強い強度のγ線が衛星で観測(中性子捕獲・核γ線)
 - 太陽中性子がγ線の発生時刻に同時に発生と仮定
 ⇒太陽中性子のスペクトルはべき関数
 - 太陽中性子のスペクトル: α_n= -3.0 ~ -4.0

September 2005 GOES X-ray flux

Active Region 10808

07 Sep 200517:17UTX17.0/3BS06 E8908 Sep 200520:52UTX5.4/2BS11 E7409 Sep 200502:43UTX1.109 Sep 200509:42UTX3.609 Sep 200519:13UTX6.2/2BS10 E5810 Sep 200516:34UTX1.110 Sep 200521:30UTX2.113 Sep 200519:19UTX1.5/2BS09 E1013 Sep 200523:15UTX1.715 Sep 200508:30UTX1.1/2NS12 W14

SOHO/MDI

5

<u>8611</u>

a 56'

700

600

500

400^L

2

9/7 17:40 UT

Mexico City, Mexico 260.8E, 19.3N, 2274m, 780g/cm² 6m² Neutron Monitor -0.8 0.6 2005/9/7 17:40UT zenith angle : 18.9° 0.4 air mass : 825 g/cm² 0.2 Sierra Negra, Mexico 262.7E, 19.0N, 4580m, 575g/cm² 4m² Solar Neutron Telescope 2005/9/7 17:40UT zenith angle : 17.5° air mass : 603 g/cm² Chacaltaya, Bolivia 292.0E, 16.2S, 5250m, 540g/cm² 12m² NM & 4m² SNT 2005/9/7 17:40UT

- zenith angle : 28.0°
- air mass : 612 g/cm²

2005/9/7 中性子モニター

17:40 – 18:05 UT に信号の増加を観測 増加の統計的有意性は >100 σ

17:36:40 UT に δ 関数的に太陽中性子が発生したと仮定して 太陽表面上での太陽中性子のスペクトルを求める

・中性子大気減衰率: Shibata program (Shibata et al., 1994)
・中性子モニター検出効率: Clem & Dorman (2000)

2005/9/7 太陽中性子スペクトル (Chacaltaya NM)

100MeV以下でスペクトル の折れ曲がりが見られる

>100MeVで

長時間(~30分)続く全増加の説明は不可能

- 中性子が時間幅を持って発生していた
- ・時間によって中性子のスペクトルが変化

まとめ

- 第23太陽活動期に発生したXクラスの太陽フレア 約100例について太陽中性子イベントを探索
 - ・5例の太陽中性子イベントが5σ以上の統計的 有意性を持って neutron monitor で観測
 ⇒ 太陽中性子イベント:10例
 - ・強い強度のγ線が衛星で観測(中性子捕獲・核γ線)
 - 太陽中性子がγ線の発生時刻に同時に発生と仮定
 ⇒太陽中性子のスペクトルはべき関数
 - ・太陽中性子のスペクトル: α_n= -3.0 ~ -4.0

まとめ

- 第23太陽活動期に発生したXクラスの太陽フレア 約100例について太陽中性子イベントを探索
 - 5例の太陽中性子イベントが 5 σ 以上の統計的 有意性を持って neutron monitor で観測
 ⇒ 太陽中性子イベント:10例 ⇒ 11例
 - ・強い強度のγ線が衛星で観測(中性子捕獲・核γ線)
 - 太陽中性子がγ線の発生時刻に同時に発生と仮定
 ⇒ 太陽中性子のスペクトルはべき関数
 ⇒ γ線の発生時刻だけでは説明できない
 - ・太陽中性子のスペクトル: *α*_n= −3.0 ~ −4.0

謝辞

- 村木綏教授、伊藤好孝教授、松原豊助教授、さこ 隆志助手をはじめ、太陽地球環境研究所宇宙線 研究室の方々
- 太陽中性子望遠鏡・中性子モニターの開発・設置・
 メンテナンスに携わっている方々
- YOHKOH・RHESSI・INTEGRAL・GEOTAIL・その他 太陽観測衛星のミッションに携わっている方々
- その他、私を支えてくださった大勢の皆様

ありがとうございました

FNI)