

満田和久 (ISAS, JAXA) on behalf of the Suzaku team

す (ASTRO-E2)

- 主要目的
 - 宇宙の構造形成、ブラック ホール直近領域の探査
 - 広帯域X線分光(0.2-700 keV)
 - 高分解能X線分光 (半値幅6 eV、0.3-10keV)
- ISAS/JAXA と NASAを中心とする国際協力
- 米国のChandra衛星、欧州の XMM-Newton 衛星と相補的な役割
- 軌道上天文台として、国際公募観測
 2005年7月10日、M-V-6により打ち上げ

	高分解能X線 分光	広帯域X線分光		
	XRT-S + XRS	XRT-I + XIS	н	KD
Energy rage (keV)	0.3 - 10	0.2 - 10	10 - 700	
Effective Area (cm ²)	180 (@6keV)	1300	I 60 (@2keV)	330 (@100 keV)
Field of View	2.9' x 2.9'	19' x 19'	0.56' x 0.56' 4.6° x 4.6° (<80keV) (>100 keV)	
HPD of PSF	1.9'	1.9'		
Number of pixels	31	1024 x 1024		
Pixel Size	29" x 29"	1.1" x 1.1"		
Energy resolution (FWHM)	6 - 7 eV	I 20 eV (@6keV)	3 keV 10% (@20keV) @550ke\	
Time resolution	5 micro s	8ms – 8s	15.3 – 61 micro s	
mission life	2.4 - 3 years	as long as possible	as long as possible	

打ち上げからの履歴

2005年	7/10	打ち上げ
	7/11-12	3軸確立、パドル展開、光学ベンチ伸展
	7/21	近地点高度上昇終了
	7/26	XRS 60mK達成、分解能7eV
	8/8	XRS Heを消失、機能停止
	8/13	XRT/XIS First light
	8/20	HXD First light
	9/10	試験観測開始
	11/17	第1回国際公募観測受付開始
	12/2	初期/試験観測データの一部を公開
2006年	1/7	第1回国際公募観測受付締め切り
	3/15	第1回国際公募観測決定
	4/1	第1回国際公募観測開始

日米協力による開発 ISAS/JAXA、都立大学、NASA/GSFC、 ウイスコンシン大学 X線光子を熱として計測 画期的に優れた分光性能 センサを絶対温度60ミリKに冷却 4段式の冷凍機 機械式冷凍機-固体ネオンー液体へリウムー断熱 消磁冷凍機

地上キャリブレーションデータ

軌道上最初のADR励磁

イベントデータ

色は異なる画素を表す

⁵⁵Fe照射較正用画素

(60 mK) Calorimeter Array カロリメータ画素 Anti-Coincidence Detector Anti-Coincidence Detector

 3.7 x 10⁻³ c s⁻¹ cm⁻² keV⁻¹ (100 eV - 12 keV)
 =3 c / IMs / 30pix / 10eV

55Fe スペクトル

地上とのIeVの分解能の差は、低周波数領域の雑音の増加による。 荷電粒子による温度変化に起因すると考えられる。 ディジタルフィルターを最適化することで、ある程度回復可能

VI2開時の変化 = Heガスの存在

He puff = 間欠的なHe ガス圧増加

Porus plug to Warm HXVL [K]

Loss of He

不具合原因調査

- JAXA XRS不具合原因究明チーム(JAXA MIB)
 メンバーはII名、内ISAS外が5名
 - NASA MIB (Mishap Investigation Board) と連携を とりつつ独立に調査
 - 2005年9月14日第一回会合
 - 5回の会合+JAXA-NASA合同会合
 - NASA WSへの参加
 - 2006年1月16日に報告書をJAXA理事長に提出
 - 2006年1月25日に概要を宇宙開発委員会に報告

http://www.jaxa.jp/press/2006/01/20060125_sac_suzaku.pdf

不具合原因 JAXA XRS不具合原因究明チーム報告書

成果と今後

- 新規技術の軌道上実証:
 - 軌道上でのX線マイクロカロリメータの動作
 - 軌道上での反同時計数カウンターの動作
 - ・断熱消磁場冷凍機の動作
- ヘリウム-ネオン冷凍機システムの動作(V12解放以前)
- 初段増幅装置(低温JFETs)の動作、特に、放射線耐性.
- 1段スターリングサイクル機械式冷凍機の動作
- フィルターホイールシステムの動作

X線マイクロカロリメータの主要技術は軌道実証された

- 超高分解能宇宙X線分光観測が実現しなかったことは、宇宙物理学の重大な損失
 Lessons learned,調査委員会の提言を取り入れて、1日
 - も早い、確実な実現に向けて努力したい。
 - NeXT計画

現在のすざく

- 良いエネルギー分解能
- 低エネルギー側での優れたエネル

ギー応答関数

 ただし1keV以下の有効面積が打ち上げ後徐々に低下 しつつある。

集光面積

軟X線領域のバックグラウンド

Background normalized by effective Area and FOV

硬X線領域のバックグラウンド

Background normalized by effective Area

優れた応答関数 (特に<1keV)

軟X線(<1keV)放射

ROSAT 3/4keV band全天図

 ローカルな構造 SNR (Loop-I, Cyg, Vela), Planetary nebula ...
 銀河バルジ領域からの放射
 銀河面からの放射
 高銀緯領域の放射 ~一様な放射

高銀緯放射の起源

Suzaku

CからMgまでの輝線を初めて高感度で検出

Suzakuによる観測

観測目的

- 未知の成分(輝線・CXB以外)の強度を 決める。
 - 様々な方向の様々な輝線強度を精度よく決める
- 輝線放射源の起源 ~ 距離への制限
 - Shadowing
 - 系外天体の吸収線観測(Chandra, XMM-Newton 回折格子)との組み合わせによる制限
 - 時間変動
- 様々な方向の元素組成比を決める
- 吸収線 ∝ nL輝線 ∝ n^2L

コンタミネーションによる検出効率の低下

時間変動: X-ray Aurora (?) 太陽風と地球磁気圏相互作用の新たな観測手段

Suzaku Team

まとめ

Thanks for your attention.

Good spectral response

X-ray emissions from earth atmosphere Emission lines, N-K, O-K, NeIX-K to FeXXV, are clearly visible

