XMASS実験の現状と将来

東京大学宇宙線研究所神岡宇宙素粒子研究施設 および

東京大学国際高等研究所カブリ数物連携宇宙研究機構

鈴木洋一郎

Contents

- Overview
- Current situation (XMASS phase I)
- XMASS 1.5
 - 1 ton fid volume
 - Intermediate stage of XMASS between phase I (100 kg fid. vol.) and phase II (10ton fid. vol.)

Physics Objectives of XMASS

Y. Suzuki, hep-ph/0008296

Multi-purpose liq. Xenon detector

- Final Goal: 10 ton fiducial mass, 25 ton total(2.5mφ)
 - pp-solar neutrinos: v+e \rightarrow v+e
 - Double beta decay $^{136}Xe \rightarrow ^{136}Ba + 2e^{-}$
 - Dark Matter: χ +Xe $\rightarrow \chi$ +Xe
- Phase-I (100 kg fid.): dedicated to a search for WIMPs (Weakly Interacting Massive Particles) dark matter
 - Search down to $\sigma_{\rm SI}$ ~ a few x 10⁻⁴⁵ cm²
 - BG level in the fiducial volume: ~ 10^{-4} /kg/keV/day (dru)
- XMASS1.5: 1 ton fiducial mass, 5 ton total(1.5mφ)
 - Dedicated to Dark Matter

Galactic Dark Matter

- Isothermal Halo Model (Standard Halo Model)
 - with a Maxwellian velocity distribution
 - Typical Values:
 - $v_0 = 220$ km/s, $v_{esc} \sim 550$ km/s,
 - $< v_{DM}^2 > = 270 \text{km/s}, \rho_x = 0.3 \text{ GeV/cm}$
- Seasonal variations (±15 km/s)

< ~ 10% modulation effects

(depend upon spectrum shape, trigger efficiency, analysis cuts....)

• Detect Nuclear Recoils: $\chi + N \rightarrow \chi + N$

$$R \sim n_t \times \sigma_{\chi N} \times (\frac{\rho_{\chi}}{M_{\chi}}) \times \int v f(\overrightarrow{v}) d\overrightarrow{v}^3$$

 $f(v)dv = \frac{4\pi v^2}{(v_0^2\pi)^{\frac{3}{2}}}e^{-\frac{v^2}{v_0^2}}dv$

$$\sigma_{\chi N} = \sigma_{\chi N}^{SI} + \sigma_{\chi N}^{SD}$$

Signal

- Event rate:
 - ~ 0.1 ev/day/100kg-Xenon for m $_{\chi}$ = 50 GeV and $\sigma_{\rm SI}$ =10⁻⁴⁴ cm²
- Recoil Energy:
 - Kinetic energy of DM: $\beta{\sim}10^{\text{-3}}$
 - E_R (Typical)~ 50 keV_{NR} for m_χ =100 GeV
- For low mass DM, spectrum become very soft for large target masses like Xe, Ge,...

Y. Suzuki@CRC_Town_Meeting in 東工大

Current Experimental Situation

Liquid Xenon

¹²⁴Xe ¹²⁶Xe ¹²⁸Xe ¹²⁹Xe ¹³⁰Xe ¹³¹Xe ¹³²Xe ¹³⁴Xe ¹³⁶Xe

Mostly Odd

Y. Suzuki@CRC Town Meeting in 東工大

- Atomic Number (Z=54)
 - Good for a few 10s to 100 GeV MIMPs search
- High density ($\rho=3g/cm^3$)
 - Compact detector
- Can use scintillation and ionization (TPC)
 - XMASS uses only scintillation light
- Purification
 - Many methods in gas and liquid phase
- Study Spin dependence (option) ← Easier isotope separation (odd \$ even)

(0.10%) (0.09%) (1.92%) (26.4%) (4.07%) (21.2%) (26.9%) (10.4%) (8.87%) 2012/0722

 $\beta\beta$ -decay

Mostly Even

The phase-I XMASS detector

- Detector
 - Single phase (scintillation only) liquid Xenon detector
 - Operated at -100°C and ~0.065MPa
 - 100 kg fid. mass, [835 kg inner mass (0.8 mφ)]
 - Pentakis-dodecahedron
 - \leftarrow 12 pentagonal pyramids: Each pyramid \leftarrow 5 triangle
 - 630 hexagonal & 12 round PMTs with 28-39% Q.E.
 - photocathode coverage: > 62% inner surface

Y. Suzuki@CRC_Town_Meeting in 東工大

m diameter

8

Characteristics Why single phase

- XMASS is a new type of detector
 - Single phase (suited for a large detector) ⇔ Double phase Background rejection through S2/S1: ~10²~10³
- Sensitive also electron/γ events
- Large volume and BG less fiducial volume inside
 - Large self-shielding effect
 - Eventual neutron BG rejection
- Large Scalability, simple to construct and operate
- High light yields & Large photon coverage (15 pe/keV)
 - Low energy threshold (< 5 keVee ~ 25 keVNR) for fiducial volume

Efforts to reduce BG in advance Backgrounds are crucial for a single phase detector

External Backgrounds

- XMASS detector was placed in the 800 ton water tank
 - First experiment to use a Water Tank
 - Active: 72 20" PMTs
 - Giving > 4m water shields
 - $-\gamma$: 10³ reduction by 2m (smaller than Ξ PMT BG)
 - $n << 10^{-4}/d/kg$ (by 2m)
- Screening of the materials
 - we have measured ~250 parts by HP Ge detector.

(smaller than PMT BG)

>4m

10 m

Efforts to reduce BG in advance

External Backgrounds

- Development of low BG PMTs
 - 1/100 BG of regular PMT
 - + Self-Shielding effect
 - $\gamma_{BG} < 10^{-4} / \text{keV/day/kg}$

	BG/PMT with base parts
U chain	0.70 ± 0.28 mBq
Th chain	1.5 ± 0.31 mBq
40K	< 5.1 mBq
60Co	2.9 ± 0.16 mBq

Efforts to reduce BG in advance

Internal Backgrounds

- Distillation to remove Kr (85 Kr (Q_{β} = 687 keV))
 - Kr has lower boiling point than Xe
 - Distillation was done: 10 days before filling into the detector ($\sim 1 \text{ ton}$)
- Charcoal for Rn deduction
 - target value
 - ²²²Rn: target 1.0mBq for 835 kg inner volume
 - ²²⁰Rn: target 0.43mBq for 835 kg inner volume
- Prepared liq. phase circulation (a few litter-LXe/min) to remove contamination: not used yet

Detector Construction

2009.11: PMT holder and PMT installation

2010.09: Construction Completed

2012/0722

Y. Suzuki@CRC_Town_Meeting in 東工大

Xe filling

- Evacuation and Baking
- 2010.10.16 Test f
- 2010.10.16
- 2010.10.24
- 2010.10.26
- 2010.10.31

Test filing Xe Collection

- 1st Filling
- Xe Collection
- 2nd filling

- 100kg
 1129kg Recover Xe as in a liquid phase to clean up the inside of the detector
- 2011.01.21 Xe Collection for the work to fix the stacked calibration rod
- 2011.01.31 3rd filling 1085kg

a in 東工大

Commissioning run

- Calibration
 - Source Rod (57Co, 241Am, 137Cs, 109Cd, 55Fe)
 - External sources: 60Co, 137Cs, 232Th, Neutron
- Normal Data taking (physics runs)
- **Development of Software**
- Change of the physical \bullet condition of Xenon.
 - High/Low pressure run
 - Change of the refractive index of $\frac{1.7}{2}$ Xe runs: change of the
 - O2 runs: change of the absorption length
 - Boiling runs: create convection inside of the detector

- Gas run
 - Important to identify the surface BG
 - BG measurement of the detector parts (attach the material at the end of the calibration source rod) Al, GORE-TEX, Cu, Ni plate

Commissioning run

Event Reconstruction

- Pattern and detected photoelectron based event reconstruction
 - Grids in the detector
 - Make expected pe for each PMTs
 - Look for a vertex grid to have a maximum likelihood.
 - Energy is also reconstructed for the vertex position
 - Likelihood to evaluate the goodness of fit
 - Works for $E > 2 \sim 5$ KeV
- Leakage of the reconstructed vertex into the fiducial volume
 - Under the evaluation

Energy Calibration

- Energy resolution for ⁵⁷Co (122keV, γ-rays)
 4% rms
- High p.e. yield: 14.7±1.2 pe/keV
 ⇔ 2.2pe for XENON100

Vertex reconstruction

- Position Resolution for ⁵⁷Co (122keV γ rays)
 - 1.4 cm rms (0cm: center)1 cm rms (±20cm)

Measured Spectrum (Whole Volume) Unexpected backgrounds

 We anticipated that the most backgrounds come from PMT γ (Measured by Ge detector)

(shown by <mark>yellow)</mark>

 But we found unexpected BG which dominates below 100~200 keV.

2012/0722

Measured Spectrum (Whole Volume) **Unexpected backgrounds**

Y. Suzuki@CRC Town Meeting in 東工大

Measured Spectrum (Whole Volume) Unexpected backgrounds below 5 keV

entries/day/keV/kg

entries/day/keV/kg

- GORE-TEX: between PMT and holder used for a light seal contains 0~6±3% of modern carbon
- Understudy
 - GORE-TEX might explain
 - But parameters (ex. transparency of light inside of GORE-TEX) are not well known
 - We will remove GORE-TEX in future detector refurbishment
- There may be unidentified sources of BG or something else.

Background estimates

Material	Measured RI	and activity		Methods of the measurements
PMTs (per PMT)	238U: 232Th: 60Co: 40K:	0.704 ± 0.282 1.51 ± 0.31 2.92 ± 0.16 9.10 ± 2.15	mBq mBq mBq mBq	HPGe detector measurement for each parts and whole PMT
PMT aluminum (210g)	238U-230Th: 210Pb: 232Th: 235U:	1.5 ± 0.4 5.6 ± 2.3 96 ± 18 ~67	Bq Bq mBq mBq	HPGe detector measurement. → By calculation
Detector surface	210Pb:	~40	mBq	Alpha candidates using FADC data Surface: PMT window 59%, PMT AI 7.0% PMT rim 7.0%, GORETEX 3.7%, Cu 23.3% (surface 7.8%, wall 14.2%, bottom 1.3%)
GORE-TEX for PMTs (120g)	14C: (6±3% of mod 210Pb:	0.4 ± 0.2 lern carbon) 26.5 ± 11.9	Bq mBq	14C: modern carbon measurement. 210Pb: Ge measurement.
Internal RI in xenon	85Kr: 214Pb:	<2.7 7.1	ppt mBq	85Kr : API-MS measurement 214Pb : ~222Rn concentration in detector

2012/0722

Internal BG (Rn)

- ²²²Rn: Identify ²¹⁴Bi \rightarrow ²¹⁴Po \rightarrow ²¹⁰Pb decays
 - ²¹⁴ Po decays with 164 μ s half life
 - β and α coincidence

- ²²⁰Rn: Identify ²²⁰Rn \rightarrow ²¹⁶Po \rightarrow ²¹²Pb decays
 - ²¹⁶Po decays with 0.14sec half life
 - two α 's with short coincidence
 - Upper limit <0.28mBq (90%C.L.)

⁸⁵Kr

API-MS

Summary (Measured spectrum)

- Around 5 keV region, we have more than 2 orders of magnitude larger BG from PMT Al seal and 210Pb surface BG although we understand those backgrounds above 5 keV.
 - They are all surface BG, but there is a reconstruction tail into the fiducial volume.
- Below 5 keV
 - There may be a contribution from 14C contaminated in GORE-TEX, but not proved yet
 - There may be unknown BGs or others
- No problem for the internal backgrounds

Summary (Measured spectrum)

• Our BG level (whole volume) is still 'low' even with the unexpected surface backgrounds.

2012/0722

Y. Suzuki@CRC_Town_Meeting in 東工大

Physics analysis (sensitivity study)

Whole Volume Analysis with lowest threshold

- The lower the threshold, the higher the sensitivity for low mass WIMPs
- Even with the current high BG level, we have similar sensitivity for other running experiments
- Most backgrounds in the low energy side come from the Cherenkov events from ⁴⁰K decay in the photo cathodes.

Whole Volume Analysis with lowest threshold

We took the data with 4 hits threshold and analyze the events above > 0.3 keVee for entire volume

6.75 days in Feb

- Clean up 1: time difference to the previous/next events > 10ms
- Clean up 2: RMS of the hit timing < 100ns (rejection of after pulses of PMTs)
- Cut: Cherenkov rejection
 - 40K decay in photo cathodes to create Cherenkov in the window of PMT
 - Most BG in this energy regiion

Trigger threshold and Expected DM signal

- Trigger efficiency (4 hits)
 - For 7 GeV DM
 - 30% @0.25 keV
 - 50% @0.30 keV

Expected DM signal

- w/ trigger efficiency
- Before any cuts
- Poison distribution for energy resolution

Cherenkov cut

- "head to total ratio"

 = (# of hits in 20ns window)
 / (total # of hits)
- Cherenkov event: ~1 scintillation: ~ 0.5
- Low energy events observed in Fe55 calibration source and DM simulation (t=25ns) show similar distributions
- Efficiency ranges from 40% to 70% depending on the p.e. range.

Extraction of the limit

- Compare Dark Matter MC to the data above the analysis thresholds
- Obtain the maximum cross section (upper limits) of the spectrum not to exceed the observed data points.
- Then, statistical and systematic errors are assigned

Results on low mass dark matter

- The line (90% lower bound) includes all the systematic errors except Leff .
- Leff uncertainty band is shown separately.
- Current XMASS is sensitive to the allowed regions of DAMA/CoGeNT/CRESST.
- Some part of the allowed regions are excluded.
- We expect to reduce backgrounds further soon

Most systematics (Leff)

FIG. 1: All direct measurements of $\mathcal{L}_{\rm eff}$ [12, 13] described by a Gaussian distribution to obtain the mean (solid line) and the uncertainty band (1 σ and 2 σ). Below 3 keV_{nr} the trend is logarithmically extrapolated to $\mathcal{L}_{\rm eff} = 0$ at 1 keV_{nr}.

Annual modulation

- In a few keVee region including 2 to 6 keVee
- Same event reduction for low energy whole volume analysis
- Use most of the available data from commissioning runs: 165 days
- Energy scale based on 57Co data (±3% at most)
- Data sets in 11 periods
- Scale factor re-adjustment by 60Co in each periods (0.1 ~ 0.6 %)
- Count number of events

2-6 keVee

- DAMA modulation
 - Parameters: A=0.0098,
 365 days, peak=159.2
 days, 2-6 keVee
- Good test for electron/gamma events
- χ^2
 - 22.2 for flat
 - 31.6 for 'DAMA moduration'

Xe ⇔Na

- QF(Na)~0.25, Leff(Xe)~0.15
- 2~6keVee(Na) → 8~24 keV_{NR} → 1~4keVee(Xe)
 - − but 1/30 sensitivity ← recoil shape, A²
- χ^2 : 10.8 for flat, 23.8 for a modulation

• 2~6 keVee (I) → 3.5~13 keV keVee(Xe): understudy

2012/0722

DM Axions

- Event Rate for the axion dark matter (through axio-electric effect) $R[kg^{-1}d^{-1}] = 1.2 \times 10^{19} A^{-1}g_{aee}^2 m_a \sigma_{\rm pe}$
- g_{aee} : strength of the coupling constant, m_a : axion mass in keV, σ_{pe} : photo-electric cross section in barns/atom

DM Axions

- XMASS results have similar sensitivity to the current experiments.
- The fitting the signal with backgrounds above 5 keV, where we know the background very well, will increase the sensitivity by factor of 5 (in future)

Solar Axions

Solar Axions (gaee)

- Limits from absolute maximum: $g_{aee} = 4.5 \times 10^{-11}$
- Allowed mass for particular models:

Solar Axion (Primakoff: $g_{agg} \otimes g_{aee}$)

- Black body spectrum with ~ 4 keV peak
- $g_{a\gamma\gamma} \otimes g_{aee} < 1.1 \times 10^{-19}$

Solar Axion (Nuclear de-excitation: $g_{aN} \& g_{aee}$)

4.1 ps_5/2-

10.5 ps 3/2-

1/2-: T=5/2

8.7 ns

271.79 d

2---=836.0

6.4

706.416 _0.183%

.99.8%

366.759

136.4745

- Axion emission through M1 transition level instead of $\boldsymbol{\gamma}$
- The low energy excited state is highly populated due to the temperature of the sun
- 57Fe is the best candidate of the source of axions.

Fiducial Volume Analysis

- We are still developing the software to reduce backgrounds further
- Today: intermediate report
 - Eobs > 5 keV
 - Reconstruction of the energy and vertex position
 - Fid. Volume cut 39 cm (751 kg)
 - Topological pattern cut
- Total efficiency at 5 keV: 14%
- Background level 1.8 x 10⁻³ dru (events/ day/ kg /keV)@ 5 keV
- ~ 100 times larger than originally designed
 - Software to reduce backgrounds further
 - Signal + backgrounds fit
 - Removal of the origin of the backgrounds → refurbishment

Summary (Analysis)

- We have obtained similar sensitivities to the other current experiments in the following analysis:
 - Low mass dark matter search
 - Annual variations
 - Axion dark matter
 - Solar axions

Even with the situation more than two orders of magnitude higher backgrounds than we anticipated.

- This is due to, large total mass, Low threshold, sensitive to the electro-magnetic events as well as nuclear recoils
- But fiducial analysis: two orders worse
- So the results :: encouraging? or discouraging ?
- In anyway we will reduce those backgrounds physically in next several months and we can expect one to two orders of magnitude improvements.

Refurbishment

- PMT Al-seal
 - Difficult to remove
 - Installation of Cu ring around the PMT quartz window
- Place a Cu-cover on the gap
- Remove GORE-TEX
- Clean up surface
- Dis-assemble of the detector will start in September

Improvements by refurbishment

- Expected background reduction
 - Cu-ring and Cu-cover over the Alseal
 - ~1/100 reduction above > 5 keV
 - Remove GORETEX
 - ~1/100 reduction < a few keV
 - Reduce surface 210Pb
 - ~1/100 reduction above > 5 keV

File Edit View Options Tools

Y. Suzuki@CRC Town Meeting in 東工大

Help

XMASS 1.5

- Total mass: 5 tons
- Fiducial mass: 1 ton
 € 100kg
- Backgrounds
 - No dirty aluminum
 - No GORETEX
 - Less surface ²¹⁰Pb
- Identification of the Surface BG new round shape windows of PMT

PMT for XMASS1.5

Sensitivity for XMASS1.5

- Expect 10⁻⁵ dru
- Sensitivity $s_{SI} < 10^{-46} \text{ cm}^2$ (> 5 keV)
- Low threshold analysis could reach a few x 10⁻⁴² cm² around a few GeV region
- ALP search: two orders better than the current experiments (DM axions, Solar axions [Bremsstrahlung and Compton])

Time schedule

予算(減額後)

- 総額 13 億円
 - キセノン 3トン: 3億円 (すでに2トンある)
 - 光センサー1800本:3.6億円
 - 電子回路(1800チャンネル):0.6億円
 - データー収集モニター系: 0.9億円
 - 容器:2億円
 - 配管等: 0. 9億円
 - 低温設備: 1.5億円
 - -その他:0.5億円

研究組織

- 東京大学宇宙線研究所神岡宇宙素粒子研究施設
- 東京大学国際高等研究所カブリ数物連携宇宙研究機構
- 神戸大学
- 東海大学
- 岐阜大学
- 横浜国立大学
- 宮城教育大学
- 名古屋大学太陽地球環境研究所
- Sejong University
- KRISS

まとめ

- 今回のXMASS-Iで、バックグラウンドの源がほぼ理解 できた。したがって、将来の測定器ではバックグラウン ドを取り除く方策をとれる。
- 3年後に実験開始ができれば、標準的なWIPMs探索で、最高感度が得られる。早くやる必要がある。
 - XENON1tとの競争
- 今回のWhole Volume Analysisの結果により、low mass regionにも、高い感度を持つものができる。
- XMASSは、電子散乱にも感度をもっている。
 - Axion like particles (ALP)の探索にも高い感度を持っていることがわかった。
- 標準的なWIMPs探索のみでなく、多目的なdark matter の研究が行える。