

JEM-EUSO mission: Doing Astronomy by looking down to the Earth 戎崎俊一 理研基幹研

Deputy PI of the JEM-EUSO collaboration

CRCタウンミーティング2012年6月30日東京工業大学

Contents

- 1. 宇宙からのエアシャワー観測のアイデア歴 史
- 2. 何が違うのか:見下ろすのと見上げるのと
- 3. JEM-EUSOミッション概要
- 4. パスファインダーミッション
- 5. ミッション状況とまとめ

3人の巨人 John Linsley, Livio Scarsi, and 高橋義幸

1979, John Linsleyのアイデア SOCRAS: Satellite Observatory of Cosmic Ray Showers

John Linsley in 1979 in the Field Committee Report of NASA "Call for Projects and Ideas in High Energy Astrophysics for the 1980s"

The concept to observe, by means of Space Based devices looking at Nadir during the night, the fluorescence light produced by an EAS proceeding in the atmosphere

In Early 1990s John had moved to Palermo to work on the PLASTEX experiment with his old friend Livio Scarsi, and Osvaldo Catalano

高橋義幸 1995

- フレネルレンズ
 - 視野を±30度まで拡大
- 観測領域 100,000 km²

Livio Scarsi, EUSO PI

First 10²⁰ eV event (1963 Phys.Rev. with J. Linsley), PI (Beppo-SAX and EUSO)

2000-2004 EUSO on Columbus (ISS)

The EUSO submitted to ESA in Oct. 1999 (as F2-F3 missions) was reoriented to a payload for the ISS

Extreme Universe Space Observatory

2000-2001 Preliminary Accomodation study by D/MSM and D/SCI

ESA Phase A studies March 2002-2003

EUSO General Meeting, Huntsville, May, 2002

DISCAR WINNING FILM GEEN FOR THE FIRST T

ADM

ADULTS CHILDREN (3

Space Shuttle Columbia Disaster 1st of February 2003

he new dream started at the EUSO Re-foundation meeting in Nov. 2005, in ESTEC

EUSO Historical Remark

• 2004/July:

-Phase-A study successfully completed and approved at the ESA Final Review, including HTV alternative to STS.

- 2005/Feb Nov: EUSO Re-foundation began, but
 - ESA Phase-B was postponed for a long time because of the D/S financial problems and anti-ISS sentiments in Europe, ESA D/S Committees and ASI

• Japanese and US teams of EUSO sought the possibility to put it on Exposure Facility of Japanese Experiment Module of ISS. (L. Scarsi agreed/encouraged it Jan 2006)

*Y. Takahashi's presentation 2006

JEM-EUSO Kick-off meeting, June 6-8 2007

EUSO and JEM-EUSO: A Mission to Explore the Extremes of the Universe using the Highest Energy Cosmic Rays and Neutrinos by observing Earth

Launch by STS (2000-4)

JEM EF case JEM-EUSO launch by HTV

*Y. Takahashi's presentation 2006

Contents

- 1. 宇宙からのエアシャワー観測のアイデア歴 史
- 2. 何が違うのか:見下ろすのと見上げるのと
 3. 科学目的
- 4. 装置
- 5. 性能
- 6. パスファインダーミッション
- 7. ミッション状況とまとめ

the huge exposure area

FoV of 1 PDM (27km x 27 km)

BG Ocean = 1 = 500 ph/m²/ns/sr

In the city impact we assumed that 1 PDM is blind if 1 km x 1km area sees $I > I_0$

City lights – selection from DMSP data Intensity > 2000 ph/m²/ns/sr (9% of FoV)

P. Bobik, JEM-EUSO simulation meeting, Kosice, 2011

シャワーまでの距離が幾何学で決まっ ているステレオ観測は必要ない

上半分の大気は下半分より透明

下半分

 ダストが多い
 雲が多い
 レイリー散乱が強い

Clear sky ~ 29% Green band ~ 60%

Cloud top

F.Garino et al., ID398

		<3 km	3-7 km	7-10 km	>10 km
Optical Depth	OD>2	17.2	5.2	6.4	6.1
	OD:1-2	5.9	2.9	3.5	3.1
	OD:0.1-1	6.4	2.4	3.7	6.8
	OD<0.1	29.2	<0.1	<0.1	1.2

Occurence of clouds (in %) between 50° N and 50° S on TOVS database. The matrix Optical depth vs. Cloud-top altitude is shown.

Confirmed by ISCCP, CACOLO & MERIS database

Cloud impact for shower maximum observability

Large ZA EAS has limited cloud impact

Clear sky ~ 29% Green band ~ 60%

Cloud top

F.Garino et al., ID398

Optical Depth		<3 km	3-7 km	7-10 km	>10 km
	OD>2	17.2	5.2	6.4	6.1
	OD:1-2	5.9	2.9	3.5	3.1
	OD:0.1-1	6.4	2.4	3.7	6.8
	OD<0.1	29.2	<0.1	<0.1	1.2

Occurence of clouds (in %) between 50° N and 50° S on TOVS database. The matrix Optical depth vs. Cloud-top altitude is shown.

Confirmed by ISCCP, CACOLO & MERIS database

Contents

- 1. 宇宙からのエアシャワー観測のアイデア歴 史
- 2. 何が違うのか:見下ろすのと見上げるのと
- 3. JEM-EUSOミッション概要
- 4. パスファインダーミッション
- 5. ミッション状況とまとめ

JEM EUSOコラボレーション

•日本、米国、韓国、メキシコ、ロシア

•ヨーロッパ:ブルガリア、フランス、ドイツ、イタリア、ポー ランド、スロバキア、スペイン、スイス

•77 機関、250人以上の研究者

•理研::取りまとめ機関

GTU time units

- a) 蛍光光
- b) 散乱チェレンコフ光

c) 地上散乱チェンレンコフ光

 $1 GTU = 2.5 \ \mu sec$

Back. = $500 / (m^2 \text{ sr ns})$

高速のシグナル

duration $\approx 50 - 150 \ \mu s$

Simulation of the light profile observed at the entrance pupil (above) and of the observed shower image (using the ESAF code)

基本科学目的

- 荷電粒子天文学の確立
 - 高統計到来方向解析による線源の同定
 - 個々の線源のエネルギースペクトル測定
 - GZK構造の高統計測定

E>5.x10¹⁹eVにおける物理と天文学

JEM-EUSO EE target region

UHECR status in just one word

Previous to Auger / HiRes :

 $\frac{1 \text{ particle}}{100 \ km^2 \ yr \ sr}$

UHECR status in just one word

Previous to Auger / HiRes :

Key Auger / HiRes result:

 $\frac{1 \text{ particle}}{100 \ km^2 \ yr \ sr} \longrightarrow \frac{1 \text{ particle}}{1000}$

JEM-EUSO uniquenes

Large exposure + Full-sky coverage

G. Medina Tanco - ICN/UNAM

JEM-EUSO science potential

Single source astronomy

(1) PSF identification, (2) individual spectra, (3) multiplet statistical analysis,

(4) catalogue cross-correlation, (5) multiwavelength study, (6) GMF determination

Distribution of Astronomical Objects

stars

X-ray Burst

STARS, PM > 1"/YEAR

Globular

RADIO 2.1 Sources

GRB

Arrival Distribution of Heavy Nuclei

A pessimistic case rather than a conservative case

- ✓ Pure Fe composition initially (astrophysically unrealistic, but most pessimistic)
- ✓ Almost upper limit values of GMF and I GMF

Arrival Distribution of Heavy Nuclei

- \checkmark Pure Fe composition initially (astrophysically unrealistic, but most pessimistic)
- \checkmark Almost upper limit values of GMF and I GMF

- ✓ Anisotropy will appear with > 99%.
- ✓ Anisotropy from the nearest source is expected by JEM-EUSO.
試験的探求研究

新メッセンジャー

- X_0 and X_{max}
- 超高エネルギーガンマ線の検出
 - X_{max}の変化LPM effect
- 磁場magnetic fields
 - 銀河磁場と局所宇宙の磁場構造に制限

高い発見能力と新しい物理への制限

Distribution of X_{max} for protons and neutrinos for E=10²⁰ eV and θ =85° (First Peak of the shower profile)

Upper limits on neutrino flux

Key observation and instrument requirements

Observation area (Nadir)	≥1.3×10 ⁵ (H _{orbit} /400[km]) ² km ²				
Arrival direction determination accuracy	\leq 2.5° (at <i>E</i> =10 ²⁰ [eV] and 60° zenith angle)				
Energy determination accuracy	\leq 30% (E=10 ²⁰ [eV] and 60° zenith angle)				
X _{max} determination accuracy	\leq 120 [g/cm ²] (E=10 ²⁰ [eV] and 60°zenith angle)				
Energy threshold	≤ 5.5×10 ¹⁹ [eV]				
Duty cycle	≥ 17%				
Lifetime	> 3 years (goal: > 5 years)				

Japanese Experiment Module "Kibo" July 2009

きぼう

51.6°

All mission aspects have been successfully studied by JAXA and RIKEN: open issue of ISS resources.

Parameter	Value				
Launch date	JFY 2016				
Mission Lifetime	3+2 years				
Rocket	H2B				
Transport Vehicle	HTV				
Accommodation on JEM	EF#2				
Mass	1938 kg				
Power	926 W (op.) 352 W (non op.)				
Data rate	285 kbps (+ on board storage)				
Orbit	400 km				
Inclination of the Orbit	51.6 °				
Operation Temperature	-10° to 50°				

Science Instrument on HTV

JEM-EUSO Telescope will be deployed after it is attached at the ISS

HTV was successfully launched on September 2009

AMS: Poster MD Rodriguez-Frias

Science Instrument: deployed

光学系のプロトタイプ

 $\begin{array}{c} 900 \\ 800 \\ 700 \\ 600 \\ 0 \\ 500 \\ 400 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}$

Tested performances meet already the requirements (or are close to it) large diameter Fresnel lenses manufactured in Japan and tested in the US at the University of Alabama (Huntsville) and at MSFC (NASA)

Why JEM-EUSO? Large exposure + Full sky coverage

Comparison with current observatories

Observatory	Aperture km ² sr	Status	Start	Lifetime	Duty cycle	Annual Exposure km² sr yr	Relative to Auger
Auger	7,000	Operations	2006	4 (16)	1	7000	1
ТА	1,200	Operations	2008	2 (14)	1	1,200	0.2
TUS	30,000	Developed	2012	5	0.14	4,200	0.6
JEM-EUSO (E≈10 ²⁰ eV)	430,000	Design	2017	5	0.14	60,000	9
JEM-EUSO (highest energies) Tilted mode 35°	1,500,000	Design	2017	5	0.14	200,000	28

Estimation of event statistics

- Observational time 19% & cloud-impact 70%
- Incident spectrum assumed to Auger ICRC2011
- Recovery model (Medina Tanco) also tested

Expected number of events in 1 year data taking

Expected number of events 5 years (>E)

Contents

- 1. 宇宙からのエアシャワー観測のアイデア歴 史
- 2. 何が違うのか:見下ろすのと見上げるのと
- 3. JEM-EUSOミッション概要
- 4. パスファインダーミッション
- 5. ミッション状況とまとめ

パスファインダーミッション

- TUS (Lomonosov satellite: Russia)
- EUSO-BALLOON (France)
- TA-EUSO (日本)
- MicroUVT (日本)

TUS

- ロシアの衛星 "Lomonosov"
 2012内に打ち上げ予定
- Skobeltsyn Institute of Nuclear Physics, Moscow State University, Russia
- 科学的、技術的パスファインダー
 - 宇宙からシャワーを見る
 - UV背景光の観測
 - PMT とエレクトロニクス
 - UFFO (Ultra Fast Flash Observatory)
 - 韓国のガンマ線バーストミッション

Lomonosov Satellite

TA-EUSO

2012年の12月までに

Telescope Array (TA) サイトにおける 検出器テスト

- TA-EUSO 望遠鏡はBlack Rock Mesaの蛍光望遠鏡の前に置く
 - Electron Light Source at 100m
 - Most nearby SD is at ~3.5 km
 - Central Laser Facility ~21km

	JEM-EUSO	TA-EUSO
Diameter(m)	2.5	1.2(effective diameter 1m)
FOV/Pix(deg)	0.08	0.17
FOV/PDM(deg)	3.84	±4
Effective Area (km^2)	28,191	3.94
S/sqrt(N)	1	
Target energy (eV)	>3.00E+19	>1.00E+18
Number of PDM	137	1
Event Rate(/h)	0.56	0.1

Elev. ang = 26.25 deg FOV= 16.0 deg

JEM-EUSO Balloon

- 気球から下を見る
 - UV望遠鏡 (PDM EM + 3 lenses system)
- 光学テスト
- 背景光テスト
- 40kmの高さから空気シャワーを見る

フランス宇宙機関(CNES)
Phase B進行が決定
→2013年の打ち上げを目指す
→数回のフライト

マイクロUVTの視野

Contents

- 1. 宇宙からのエアシャワー観測のアイデア歴 史
- 2. 何が違うのか:見下ろすのと見上げるのと
- 3. JEM-EUSOミッション概要
- 4. パスファインダーミッション
- 5. ミッション状況とまとめ

Programmatics (1)

- ヨーロッパ宇宙機関(ESA): 2010年からELIPSプログラムの一部 として研究。ESAは宇宙機関における調整役
- ロシア宇宙機関(ROSCOSMOS)
 - Tsniimash (Roscosmos ISS研究機関) Prof. Panasyuk (Russian PI)が JEM-EUSOについてSTEC委員会で報告、了承を得る
 - モスクワ州立大学にて国際JEM-EUSO会合(2012年5月)
 - Tsniimash研究所、ISS担当副所長からROSCOSMOS副理事長に手紙: JEM-EUSOへ参加とISS資源についての国際調整の依頼
 - 望遠鏡構造(含む伸展機構)を担当することで基本合意:MOU交換

SEAFDA ALHOE KOCHMUECKOE AFEHTCTBO

To the Director of the Division of Manned Space Program of ROSCOSMOS

Alexey B. Krasnov

Dear Alexey Borisovich,

Russian scientists appealed to the Coordination Scientific and Technical Council (CSTC) of ROSCOSMOS requesting for possibility of their participation in the International wide-scale space experiment onboard the International Space Station "JEM-EUSO – International Observatory of the Universe by means of the extreme energy particles".

Currently the status of the Project is set. JEM-EUSO collaboration includes over 250 scientists form 77 organizations of Russia, Japan, USA, Korea, Mexico, Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland.

наблюдения Вселенной с помощью частиц экстремально высоких энергий».

Programmatics (2)

- 米国宇宙機関(NASA): SALMON AO (2011)は採択されなかった。2012年3月に新PIのAngela Olinto(シカゴ大)のもとARPA/ ROSESに新提案:米国の宇宙ステーション資源の提供への道を 開く。その他のFunding Agencyへの提案を企画中
- 日本宇宙機関(JAXA): 2015年ごろの有望ミッションとして推薦。
 米国およびロシアでの動きを歓迎
- 他の国: EUSO Balloonや

TA-EUSOへの参加。

JEM-EUSOへの予算の準備を進める

US team のAPRA提案書の一部

NASA	Cover F Sub Nationa Space	Page for Pro omitted to th I Aeronaution Administra	oposal ne cs and ation	NASA Proposal Number 11-APRA11-0066						
NASA PROCEDURE FOR HANDLING PROPOSALS										
This proposal shall be used and disclosed for evaluation purposes only, and a copy of this Government notice shall be applied to any reproduction or abstract thereof. Any authorized restrictive notices that the submitter places on this proposal shall also be strictly complied with. Disclosure of this proposal for any reason outside the Government evaluation purposes shall be made only to the extent authorized by the Government.										
SECTION I - Proposal Information										
Principal Investigator E-mail Address Phone Number					mber					
Angela Olinto			olinto@kicp.uchicago.edu				773-702-8206			
Street Address (1) Street Address (2)										
5640 S Ellis Ave LASR 228										
City		S	tate / Province Postal Co			Postal Code	de Co		country Code	
Chicago IL 60637-1433 US					US					
Proposal Title : U.S. Participation in the Extreme Universe Space Observatory on the Japanese Experiment Module										
Proposed Start Date P	Proposed End Date	Total Budget	Year 1 Bud	get	Year 2 Budget	Year 3 Budget	Year 4	4 Budget	Year 5 Budget	
01 / 01 / 2013	12 / 31 / 2017	494,105.57	67,747.	90	67,394.62	68,656.18	144,183.55		146,123.32	

New Organization

- PI: Piergiorgio Picozza
- Deputy PI: Toshikazu Ebisuzaki
- Global Coordinator

Andrea Santangelo

The Wizard Program

まとめ

- 挑戦1:新しい観測手法
 宇宙から空気シャワーを見る最初のミッション
- 挑戦2:荷電粒子天文学
 - 極限エネルギー宇宙線の線源を同定
 - 個々のスペクトルを図る
 - 露出の飛躍的な増加
 - 10²⁰eVでPAOの9倍、最高エネルギーで27倍
 - 一様な露出
- 挑戦3:物理の基本原理
 - ローレンツ不変性、新物理への制限
- 挑戦4:国際協同
 - 3つの大陸にまたがった広範な国際協力
 - 国際宇宙ステーション

これは始まりに過ぎない

S-EUSO

- Photon Corrector Mirror: 8 m
- FoV: > 50°
- Pixel Size: 0.02°
- Assembly and Tune-up in orbit (ISS)
 - Space Factory Concept
 - Make a Free-Flyer

Price tag \$700M Out of Strategic Planning 2002-2003

Optics option 15° FOV Limited by Schmidt

Vertical assembly & testing mode

Great observatory made & deployed from the renewed ISS heading for its own orbit

Y. Takahashi 1999

uninne

Huge Pacific Ocean will be our Detector

White circle \rightarrow HORIZON from S-EUSO (900km)

Four Space-Based Missions

	Optics Aperture [m ²]	FOV	Pixel side	Orbit altitude [km²]	Geom. aperture [km ² sr]	Annual exposure [linsley yr ⁻¹]
TUS (2012—)	1.8	9°x9°	0.6°	500	2.0x10 ⁴	2,700
JEM-EUSO (2017—)	4.5	60°φx48° (40°φ)	0.07°	400	4.0x10 ⁵ (5.5x10 ⁴)	60,000 (7000)
S-EUSO (2025—)	38	50°φ	0.04°	~900	2.0x10 ⁶	300,000

Multi-units and/or multi-fleet 2 x 3 makes 6 times

FIGURE 1. Combined Field-of-View of the Multi-OWL units.

Individual source identification

G. Medina Tanco - ICN/UNAM

Protons: E>55 EeV - 300ev from ULX + 500ev (bckgr) from IRAS

JEM-EUSO @ 5 yr

$\vec{B} = 1 \times \vec{B}_{Ahn}$

JEM-EUSO @ 5 yr

$\vec{B} = 2 \times \vec{B}_{Ahn}$

JEM-EUSO @ 5 yr

$\vec{B} = 5 \times \vec{B}_{Ahn}$

JEM-EUSO @ 5 yr compared to Auger

$\vec{B} = 2 \times \vec{B}_{Ahn}$

Fe: 500ev from ULX & no background events

GMF assessment through **PSF** global patterns

Individual PSFs do not need to be visible – 2D correlation function in (l,b) is enough to recover the structure.

L.Saez et al., ID1034

90

Scientific Objectives 3

- Exploratory Objectives: Atmospheric science
 - Nightglow

– Transient luminous events

- Space-atmosphere interactions and climate change
- Exploratory Objectives: Meteors and meteoroids

A fast UV monitoring of the atmosphere

The UV Telescope Parameters

Parameter	Value			
Field of View	±30°			
Monitored Area	>1.3×10 ⁵ km ²			
Telescope aperture	≥2.5 m			
Operational wavelength	300-400 nm			
Resolution in angle	0.075°			
Focal Plane Area	4.5 m ² +			
Pixel Size	<3 mm			
Number of Pixels	≈3×10⁵			
Pixel size on ground	≈560 m			
Time Resolution	2.5 µs			
Dead Time	<3% +			
Detection Efficiency	≥20%			
ntics Throughnut	•			

+ Optics Throughput

Upper limits on the photon-abundance – simple approach

For a sample of size N, a rejection level α , and the ad hoc assumption that there are no γ events in the sample

$$\Rightarrow \quad \mathcal{F}_{\gamma}^{min} = 1 - (1 - \alpha)^{1/N}$$

Photon discrimination

ISS samples all possible relative configurations of the geomagnetic field vs. EAS direction. JEM-EUSO is ideally suited to exploit interplay between LPM & photon splitting

Neutrino discrimination: down-going neutrinos

Distribution of the first peak of the profiles for proton and neutrinos of E = 10^{20} eV and θ = 85°.

Inclined down-going $\nu_{e} - \nu_{\tau}$ discrimination

G. Medina Tanco - ICN/UNAM

LIV for HE electrons and photons

The same argument of Glashow & Coleman can be applied to the decay of photons into e[±]-pairs

$$\delta_{e\gamma} = c_e - c_{\gamma}$$

If
$$\delta \neq 0 \longrightarrow \gamma \rightarrow e^+ + e^-$$

$$E > m_e \sqrt{\frac{2}{|\delta|}}$$

Thus even a trivial (but still restrictive) limit on δ comes from the mere eventual observation of HE photons by JEM-EUSO at ~ 10²⁰ eV:

$$\delta_{e\gamma} < \frac{2m_e^2}{E_{\max}^2} \approx \frac{2 \times (5 \times 10^5)^2}{(10^{20})^2} \sim 5 \times 10^{-29}$$

LI space symmetry violations

The possibility exists that there is an asymmetry in space, which could be the manifestation of vector fields in space.

A stringent test of relativity could be made from high multiplicity sources at known distances. If the GZK steepening functions consistently deviate at some directions in the sky external fields, like vector fields, might be emerging which are not unidirectionally Lorentz Invariant. On the other hand, the proof of non-vector fields would verify Lorentz Invariance at EHE. The possibility remains that there is an asymmetry in space, which could be the manifestation of vector fields in space.

 \vec{n}_{LIV}

UHECR spectra at different region of the sky

Micrometeoritos

Ground

Micrometeoritos: search for and characterization of small debris

radar by Jack Baggaley, University of Christchurch.
太陽系周辺の物質分布

Welsh and Shelton 2009