

電子·陽電子観測

高エネルギー宇宙線電子・陽電子の観測により、宇宙物理学における 最大の謎である暗黒物質及び宇宙線加速源の解明

A Naïve Result from Propagation

 $T (age) = 2.5 \times 10^5 \times (1 \text{ TeV/E}) \text{ yr}$ R (distance) = 600 X (1 TeV/E)^{1/2} pc

1 TeV Electron Source:

 Age < a few10⁵ years very young comparing to ~10⁷ year at low energies
 Distance < 1 kpc

nearby source

Source (SNR) Candidates :

Vela Cygnus Loop Monogem

Unobserved Sources?

2010年9月16日

Astrophysical Origin - Search for nearby SNRs -

Anisotropy distribution **Calculated electron spectrum** 1.150 10^{4} $E_c=20\text{TeV}, \tau=0\text{yr}$ Vela Ec=20TeV, τ=0yr + Tang 1984 × Golden et al. 1984 $D_0 = 2 \times 10^{29} (\text{cm}^2 \text{s}^{-1})$ sr-1 GeV²) $D_0 = 2 \times 10^{29} (\text{cm}^2 \text{s}^{-1})$ 1.100 Boezio et al. 2000 DuVernois et al. 2001 Torii et al. 2001 Distant component excluding 10^{3} $T \le 1 \times 10^{5}$ yr and $r \le 1$ kpc Aguilar et al. 2002 1.050 S-I Kobayashi et al. 2003 Chang et al. 2005 E³J (electrons m⁻² I((0)) Torii et al. 2008 1.000 Vela 0.950 Cygnus Loop Monoaem 0.900 >100GeV 10¹ >500GeV 10^{3} 10^{0} 10^{1} 10^{2} 105 10 >1TeV Electron Energy (GeV) 0.850 150 100 50 -100 -150 0 50 Kobayashi et al. (2004) Galactic longitude (deg)

Spectral signature and anisotropy by nearby sources Identification of cosmic-ray sources by TeV electron => observations 2010年9月16日 CRC将来計画シンポジウム

Electron and Positron Observations

 Flux of electrons and positrons: ~1 % of protons @10GeV
 ~0.1 % @ 1000GeV
 ~0.1 % @ 10 GeV

- □ Spectrum of electrons:
- softer than protons
- power-law index: e:~-3.0, p:-2.7
- => As higher energies,
- Lower electron flux
 - Lager proton backgrounds

Large amount of exposures with a detector of high proton rejection power (+ charge separation)

Long duration balloon flight in 10~1000 GeV (~10 m²srday) Observation in space for years over 1000 GeV (> 100 m²srday)

Efforts by the new experiments for deriving the positron and electron spectra are really appreciated to open a door to new era in astroparticle physics.

We are waiting for much more study by ATIC, PAMELA, Fermi-LAT, HESS and a forthcoming experiment in space, AMS-02.

Moreover,

We need an accurate and very-high-statistics observation for searching Dark Matter and/or Nearby Pulsars in the sub-TeV to the trans-TeV region with a detector which has following performance:

- The systematic errors including GF is less than a few %.
- The absolute energy resolution is as small as a few % (~ATIC).
- The exposure factor is as large as more than 100 m²srday (~ FERMI-LAT).
- The proton rejection power is comparable to 10⁵, and does not depend largely on energies.

It should be a dedicated detector for electron observation in space.

Calorimetric Electron Telescope (CALET) is proposed.

CALETミッション

CALET International Collaboration Team

O. Adriani²⁰, F. Angelini²¹, C. Avanzini²¹, M.G. Bagliesi²³, A. Basti²¹, K. Batkov²³, G. Bigongiari²³, W.R. Binns²⁵, L. Bonechi²⁰, S. Bonechi²³, S. Bottai²⁰, M. Calamai²⁰, G. Castellini²⁰, R. Cesshi²³, J. Chang¹³, G. Chen⁴, M.L. Cherry⁹, G. Collazuol²¹, K. Ebisawa⁵, A. J. Ericson¹⁰, H. Fuke⁵, W. Gan¹³, T.G. Guzik⁹, T. Hams¹⁰, N. Hasebe²⁴, M. Hareyama⁵, K. Hibino⁷, M. Ichimura², K. Ioka⁸, M. H. Israel²⁵, E. Kamioka¹⁶, K. Kasahara²⁴, Y. Katayose²⁶, J. Kataoka²⁴, R.Kataoka¹⁸, N. Kawanaka⁸, M.Y. Kim²³, H. Kitamura¹¹, Y. Komori⁶, T. Kotani¹, H.S. Krawzczynski²⁵, J.F. Krizmanic¹⁰, A. Kubota¹⁶, S. Kuramata², Y. Ma⁴, P. Maestro²³, V. Malvezzi²², L. Marcelli²², P. S. Marrocchesi²³, V. Millucci²³, J.W. Mitchell¹⁰, K. Mizutani¹⁵, A.A. Moissev¹⁰, M. Mori¹⁴, F. Morsani²¹, K. Munekata¹⁷, H. Murakami²⁴, J. Nishimura⁵, S. Okuno⁷, J.F. Ormes¹⁹, S. Ozawa²⁴, F. Palma²², P. Papini²⁰, Y. Saito⁵, C. De Santis²², M. Sasaki¹⁰, M. Shibata²⁶, Y. Shimizu²⁴, A. Shiomi¹², R. Spalvoli²², P. Spillantini²⁰, M. Takayanagi⁵, M. Takita³, T. Tamura⁷, N. Tateyama⁷, T. Terasawa³, H. Tomida⁵, S. Torii²⁴, Y. Tunesada¹⁸, Y. Uchihori¹¹, S. Ueno⁵, E. Vannuccini²⁰, H. Wang⁴, J.P. Wefel⁹, K.Yamaoka¹, J. Yang¹³, A. Yoshida¹, K. Yoshida¹⁶, T. Yuda⁷, R. Zei²³

Aoyama Gakuin University, Japan
 Hirosaki University, Japan
 ICRR, University of Tokyo, Japan
 Institute of High Energy Physics, China
 JAXA/ISAS, Japan
 Kanagawa University of Human Services, Japan
 Kanagawa University, Japan
 KEK, Japan
 Louisiana State University, USA
 NASA/GSFC, USA
 National Inst. of Radiological Sciences, Japan
 Nihon University, Japan
 Purple Mountain Observatory, China

- 14) Ritsumeikan University, Japan
- 15) Saitama University, Japan
- 16) Shibaura Institute of Technology, Japan
- 17) Shinshu University, Japan
- 18) Tokyo Technology Inst., Japan
- 19) University of Denver, USA
- 20) University of Florence and INFN, Italy
- 21) University of Pisa and INFN, Italy
- 22) University of Rome Tor Vergata and INFN, Italy
- 23) University of Siena, Italy
- 24) Waseda University, Japan
- 25) Washington University in St Louis, USA
- 26) Yokohama National University, Japan

CALETミッションの経緯

- 2006年11月 : JAXAによるJEM曝露部第2期利用の募集
- 2007年5月 : JAXAで概念設計を行うポート占有ミッションとしてCALET選定 (ポート共有:8ミッション ポート占有:3ミッション)
- 2007年8月 : JAXAはミッション定義審査(MDR)を実施後、提案機関である早稲田大学 と概念設計の共同研究を開始
- 2009年10月 : ISS「きぼう」利用推進委員会でCALETをポート占有利用ミッション候補として選定 標準(500kg級)ペイロードとして2013年打ち上げ(目標)
- 2009年11月 : システム要求審査会 (SRR)を実施 JAXAによる開発メーカ公募 (RFP)の開示
- 2010年2月 : システム定義審査会 (SDR)を実施 JAXAは「IHIエアロスペース」をCALET開発メーカとして選定

2010年3月5日:開発移行審查

2010年4月1日: 開発以降に伴い、JAXA宇宙環境利用センター内にCALETプロジェクトチーム設置

開発スケジュール(案)

CALET System Design

The CALET mission instrument can satisfy the requirements as a standard payload in size, weight, power, telemetry etc. for launching by HTV and observation at JEM/ EF.

JEM/EF & the CALET Port

Field of View (45 degrees from the zenith)

CALET Overview

□ Observation:

- > Electrons : 1-10,000 GeV
- Gamma-rays : 10-10,000 GeV (GRB >100MeV)
 - + Gamma-ray Bursts : 7 keV-20 MeV
- Protons, Heavy Nuclei: several 10 GeV- 1000 TeV (per particle)
- Solar Particles and Modulated Particles in Solar System: 1-10 GeV (Electrons)

□ Instrument: High Energy Electron and Gamma- Ray Telescope Consisted of :

- Imaging Calorimeter (Particle ID, Direction)
 Total Thickness of Tungsten (W): 3 X₀
 Layer Number of Scifi Belts: 8 Layers ×2(X,Y)
- Total Absorption Calorimeter (Energy Measurement, Particle ID) PWO 20mm×20mm×320mm Total Depth of PWO: 27 X₀ (24cm)
- Charge Detector (Charge Measurement up in Z=1-35) Cherenkov Detector
- 2 Layers with a coverage of 45.0x45.0 cm²

CALET Performance for Electron Observation (2)

Angular Resolution

Proton Rejection Power for 1 TeV Electron

Electron 1 TeV

Comparison of Detector Performance for Electrons

CALET is optimized for the electron observation in the tran-TeV region, and the performance is best also in 10-1000 GeV.

Detector	Energy Range (GeV)	Energy Resolution	e/p Selection Power	Key Instrument (Thickness of CAL)	SΩT (m²srday)
PPB-BETS (+BETS)	10 -1000	13% @100 GeV	4000 (> 10 GeV)	IMC : (Lead: 9 X ₀)	~0.42
ATIC1+2 (+ ATIC4)	10 - a few 1000	<3% (>100 GeV)	~10,000	Thick Seg. CAL (BGO: 22 X ₀) + C Targets	3.08
PAMELA	1-700	5% @200 GeV	10 ⁵	Magnet+IMC (W:16 X ₀)	~1.4 (2 years)
FERMI-LAT	20-1,000	5-20 % (20-1000 GeV)	10 ³ -10 ⁴ (20-1000GeV) Energy dep. GF	Tracker+ACD + Thin Seg. CAL (W:1.5X ₀ +CsI:8.6X ₀)	300@TeV (1 year)
AMS (less capability in PM model)	1-1,000 (Due to Magnet)	~2.5% @100 GeV	10 ⁴ (x 10 ² by TRD ⁾	Magnet+IMC +TRD+RICH (Lead: 17X _o)	~100(?) (1year)
CALET	1-10,000	~2% (>100 GeV)	~105	IMC+Thick Seg. CAL (W: 3 X _o + PWO : 27 X _o)	220 (5 years)

Electron and Positron from Dark Matter Decay

Extragalactic Diffuse Gamma-rays from Dark Matter Decay

Excellent energy resolution with CALET (~2%:10GeV~10TeV) 20

2010年9月16日

Proton and Nucleus Observation (5years)

CALET データダウンリンク 概念図

観測及びHKデータはリレー衛星によって米国経由 または直接に筑波宇宙センターISSオペレーション ルームにダウンロードされる 早稲田大学ミッ ションサイエンスセ ンターから国内外 の共同研究機関 にデータ配布

まとめ

- CALETのTeV領域の電子・ガンマ線観測により近傍加速源と暗黒 物質の探索を行う他、陽子.原子核の観測を1000TeV領域まで行い、宇宙線の加速・伝播機構を解明
 - さらに、太陽変動やガンマ線バーストのモニター観測を実施
- CALETは日本で初めての宇宙空間における本格的宇宙線観測 プロジェクト
 - 2013年度の打ち上げを目指し、2010年4月より開発段階
- CAELTはJAXA有人宇宙環境利用ミッション本部宇宙環境利用センターと早稲田大学の共同ミッション
 - 宇宙科学研究所の支援
- 米国NASAからISSにおける協力としてCALETミッション支援予算の承認