高エネルギー電子、カンマ線観測計画 (CALET: CALorimetric Electron Telescope)

http:// calet.n.kanagawa-u.ac.j

神奈

ポスター発表: P6 高柳昌弘 P7 吉田健二 P8 田村忠久

ISS搭載ミッションとしてのCALETの適合性 CALETによる電子、ガンマ線、原子核成分観測 シャワー検出器のためのSciFi読み出しフロントエンド回路の開発

メンバーリスト (LOI参加者)

日本:

神奈川大工、JAXA/ISAS^A、横国大工^B、放医研^C、弘前大理工^D、芝工大シ工^E、埼玉大理^F、 立教大理^G、青学大理工^H、神奈川保健福祉大^I、宇宙線研^J、東大理^K、クリアパルス^L、 オービタルエンジニアリング^M

鳥居祥二、槇野文命、立山暢人、田村忠久、柏木利介、吉田健二、奥野祥二、日比野欣也、 西村純^A、山上隆正^A、斉藤芳隆^A、高柳昌弘^A、上野史郎^A、冨田洋^A、柴田槙雄^B、片寄祐作^B、 井上武^B、内堀幸夫^C、北村尚^C、倉又秀一^D、市村雅一^D、笠原克昌^E,水谷興平^F、村上浩之^G、 小林正^H、古森良志子^I、湯田利典^J、寺沢敏夫^K、久保信^L、山口耕司^M

米国:

Washington University: W. R. Binns, M. H. Israel, H. S. Krawzczynski, J. H. Buckley (ACE) Louisiana State University: M. L. Cherry, T. G. Guzik, J. B. Isbert, J. P. Wefel (ATIC) University of Denver: J. Ormes USRA/NASA/GSFC: A. Moissev (GLAST) イタリア:

INFN, sezione di Pisa : F.MorsaniScuola Normale Superiore di Pisa : F.LigabueUniversity of Florence: O.Adriani, L. Bonecci et al. (PAMELA)

中国:

Purple Mountain Observatory, Chinese Academy of Science: Jin Chang, Weiqun Gan, Tan Lu (Lunar Mission)

CALET ミッション概要

- 目的: 宇宙における高エネルギー過程の体系的解明
- 装置: 粒子選別機能を備えた高精度イメージング・カロリメータ
 ペイロード質量:2500kg、消費電力:600W、テレメトリー:600kbps
- 観測: 電子(1 GeV~10 TeV)

電子加速源、加速機構、銀河伝播機構、太陽磁気圏、暗黒物質 ガンマ線(20 MeV~10 TeV)

天体におけるガンマ線生成、銀河内、外拡散成分、ガンマ線バースト、暗黒物質 陽子,原子核(1 TeV~1000 TeV)

衝撃波加速、銀河内伝播モデル、KNEEの起源

● 打ち上げ: 国際宇宙ステーション JEM/EF(~3年間)(輸送機はHTVを利用)

JEM: Japanese Experiment Module

CALET System

Scientific Heritage

ALET

1993-1998:

- Development of SciFi/Lead Calorimeter for Electron Observation (BETS) NIM 457, 499-508 (2001)
- Successful observation of electrons in 10-100 GeV
- Observation of atmospheric gamma-ray flux with improved BETS

ApJ 559, 973-984 (2001) Phys Rev D.66 052004(1-9) (2002)

BET Instrument

Shower Image at CERN

Balloon Flight

1999-2003:

- Development of new detector of Antarctic Flight (PPB-BETS) for observation in 100-1000 GeV
- Observation expected in 2003 at Syowa Station

Balloon Flight at Antarctica 2005年1月7日

Trajectory ~13days 宇宙線将来計画シンポジウム

PPB-BETS with solar panels

Scientific Objectives

10

NO(1/10)

4gSi(1/50)

on(1/2500)

²⁰⁰⁵年1月7日

Electron Energy Spectrum in 1 GeV ~ 10 TeV

Nearby Source Candidates

Electron Energy Loss by

- Inverse Compton Scattering
- Synchrotron Radiation

Energy Loss RatedE/dt1/E²

1 TeV Electron Source:
Age < 10⁵ years
Distance < 1 kpc

Vela
Cygnus Loop
Monogem

Unobserved ?

2005年1月7日

Model Dependence of Nearby Source Effect

Solar Physics

長期変動の観測 - 太陽磁気圏モデルの検証ー

- Force-Field 近似の妥当性 \triangleright
- Drift効果はあるのか? \triangleright
- 宇宙線拡散係数の決定 \triangleright

短期変動の観測 - フォーブッシュ減少の原因と電荷依存性ー

- ▶ フォーブッシュ減少の大きさは何できまるのか? 2000 Solar Activity(宇宙線強度と地磁気擾乱係数)
- 電荷依存性はあるのか? \succ
- 長期変動と短期変動の関連 \triangleright

宇宙線将来計画シンポンシム

電子観測による暗黒物質の検出

2005年1月7日

宇宙線将来計画シンポジウム

10

CALET on the ISS orbit without attitude control of the instrument: Wide FOV (~45°) and Large Effective Area (~0.5 m²) in 20 MeV- 10 GeV

- Sky coverage of 70 % for one day
- All sky coverage in 20 days
- Typical exposure factor of ~50 days for point source

Good Energy Resolution (< a few %) over 100 GeV

Measurement of change of power-law spectral index
Possible detection of line gamma-rays from Neutralino annihilation

CALET all-sky exposure map (>100 MeV) in the Galactic coordinate for one year.

Brightness indicate the amount of exposure from 43 days, the shortest, to 52 days, the longest.

CALET Capability of Gamma-Ray Observation S

AGN Spectra Observed after Absorption by IR Backgrounds

2005年1月7日

Line Gamma-Ray from SUSY Dark Matter

TeV Gamma-Ray from GC ?

Chandra GC survey

120

140

2005年1月7日

Simulation of Gamma-ray Performance

(Preliminary)

ALET

2005年1月7日

Propagation Model by B/C Ratio

Energy (GeV/n)

Electron Detection and Proton Background

宇宙線将来計画シンポジウム

ALET

Electron and Gamma-ray Flux

CALETの装置概要

装置要求性能:

≻ 有効面積: 1 m² sr ▶ イメージング性能: < 1mm</p> ▶ 陽子除去性能: ~10⁶ > エネルギー領域: $20 \text{ MeV} \sim 10 \text{ TeV}$ for e. $1 \sim 1000$ TeV for hadrons (Optional) イメージングカロリメータ (IMC): ▶ 面積: ~1 m² > シンチファイバー: 1mm square x ~1 m length 18 layers(x &y) ▶鉛の厚さ: 4 r.l, 0.13 m.f.p

全吸収型カロリメータ (TASC):

 ▶ 面積: ~0.5 m²
 ▶ BGO: 25 x 25 x 350 mm 7 layers (x &y)
 ▶ BGOの厚さ: 32 r.l, 1.6 m.f.p

CALETの側面断面図

検出器質量: 1760 kg 全吸収層の厚さ: 36 r.l ~1.7m.f.p

Examples of Shower Profile by Simulation

Gamma-ray 20 MeV

Gamma-ray 1GeV

Gamma-ray 10GeV

2005年1月7日

Electron 10 GeV

Electron 100 GeV

Electron 10 TeV

宇宙線将来計画シンポジウム

Proton 3 TeV

Proton 3 TeV

Detector Components

装置構造

Imaging Calorimeter

Total Absorption Calorimeter

For gamma-ray observation, the angle resolution and detection efficiency depends on the thickness of lead plate

100 MeV gamma-ray for 0.1 r.l. thickness of lead

Angle Resolution vs. Lead Thickness

Detection Efficiency vs. Lead Thickness

Simulation of Shower Development in BGO Proton Events: 500,000 >1 TeV Electron Events: 1000 > 1TeV

Simulation Study on Hadron Rejection Power

Simulation Events: Isotropic Incident and Uniform Distribution on the Top **Proton Events** ~10⁶ at 10 TeV (Spectrum) : Electron Events 1000 at 4 TeV

E/E: Fraction of Energy Deposit at the Bottom Layer (BGO14) Rrms: Root Mean Square Lateral Spread of Shower (Energy Weighted)

于由線将米計画シンポジウム

電子観測におけるCALETの性能(シミュレーション)

Attachment Payload (Max. Total Weight)	JEM/EF Heavy (2500 kg)	
Energy Range of Electrons	1 ~ 10,000 GeV	
Geometrical Factor	0.5~1.0 m ² sr	
Proton Rejection Power	~ 10 ⁶ [#])	
Energy Resolution	9.2 / sqrt(E(10 GeV)) %	
Angular Resolution [deg.]	0.03 ~0.1 deg.	
Instrumental Weight	2,200 kg	

#) Total Rejection Power by Scifi .Cal. and BGO Cal. for the protons at same energy with electrons

Scintillating Fiber (SciFi)

SciFi (1mmSq.) Belt

Measurement of 1MIP Peak of SciFi

Peak – 6.5 p.e for the - ray source 5.7 p.e for 1 MIP

ADC count

Bonding of Viking Chip

 Carefully select parts(ADC, Op Amp etc) <- small size, low power consumption 10
 Signal between back plane and FEC is separated with photo-coupler <- Noise reduction

 □Power consumption for 1 set up FEC (for 1 MA-PMT, 64 channel)
 → 300 mW (measured)
 □Specification of VA power consumption 109 mA * 2 + 30 mA(other)
 → total(40000 channel)
 ~ 190 W(with only VA)
 □ Readout speed of more than 1 kHz

VA Chip: 32 ch of PreAmp+Shaper

	VA32HDR2	VA32HDR14 (design spec.)
Noise (RMS)	0.2 fC (1.2x10 ³ e)	0.75 fC (4.7x10 ³ e)
1MIP	3.6 fC (2.2x10⁴ e)	3.75 fC (2.3x10 ⁴ e)
1MIP/Noise	18	5
Maximum Input	± 0.8 pC (5.2x10 ⁶ e)	± 15 pC (9.4x10 ⁷ e)
Linearity	_	1.15 %@ - 8 pC
-		2.9 %@ -12 pC
		7.45 %@ -15 pC
Gain	370 µ А/рС	73 µ A/pC
Dynamic Range	230	4000
Peaking Time	1~3 µs	~1.85 µs
Supply Voltage	$\pm 2 \text{ V}$	± 2.5 V
Power	1.5 mW/ch	3.4 mW/ch
Size [mm ²]	3.642 x 3.355	4.375 x 3.330

FEC Development -Readout Speed-

1 ADC for 1 VA chip(A/D conversion is performed in FEC) 16 bit ADC(max 250 kHz) operated with 10 μ sec / channel (100 kHz) \rightarrow 320 μ sec / event (3 kHz) \leftarrow enough for CALET application

FEC Development - Noise and Resolution -

Noise at large input charge (> 10pC) in case of the synchronous hold signal comes from the time jitter

>Flatter (better) noise performance in case of the asynchronous (trigger) hold signal \rightarrow use asynchronous hold signal

ビーム実験用プロトタイプ検出器

ビーム実験用プロトタイプIMC検出器(SciFi)の組み上げ

Test by CERN SPS Beam in 2003

- -

[25]

[20]

44128

[15]

42028

[12]

8552

8934

Imaging Calorimeter

SciFi Belts : 14 layers, Lead : 4r.l

Total Absorption Calorimeter

BGO: 10 layers	(CALET 14 layers)

Proton Rejection Capability

Transition Curve of Electron Shower

Graph **CERN 2003 CERN 2003** Number of particles 0.020 0.05 P 150 GeV 0.04 P 150 GeV Deposit posi 10 **50 GeV electron** 1 25 Lateral Spread [mm] 10 Lateral Spread [mm] 10 **BGO** layer

2005年1月7日

7 TeV x 7 TeVの衝突型加速器 (CERN-LHC)による前方散乱粒子の測定により、10¹⁷eVにおける2次粒子の最前方領域でのエネルギー分布を測定することにより、シミュレーション計算で必要なハドロン相互作用モデルを決定する。 TeV領域でのCALETのキャリブレーション

Low energy beam profile at the top of the detctor

測定器の概念図

2005年1月7日

SciFi Signal Intensity for Electron 200 GeV (HV -600 V)

2005年1月7日

CALET Data Processing Flow Chart

Gamma-Rays at Lower Energies: 20 MeV ~ 10 GeV

 Anti-Coincidence (< 0.5 MIPs) & On-board Tracking in IMC (> 3 layers) Trigger Rate of Gamma Rays: ~ 14 Hz (mostly from the Galactic Plane) Background: Albedo. ~37 Hz (> 10 MeV); Hadron, negligibly small
 Identification of gamma-ray by image analysis in IMC

Electrons and Gamma Rays* at Higher Energies: 10 GeV~ 10 TeV

*) The anti-coincidence is not valid due to backscattered particles

- On-Board Shower Trigger in IMC to reduce the backgrounds less than 1 % Trigger Rate: ~40 Hz
- Analysis of the Shower Development in TASC and the Shower Image in BGO Proton backgrounds to electrons and gamma-rays: < less than10⁻⁵ Electron background to gamma-rays : < 2 x 10⁻³

Proton and Heavy Ions: 1 TeV ~ 1000 TeV

- On-Board Shower Trigger in TASC
 - Trigger Rate: ~ 0.1 Hz
- Charge Identification by Incident Track in IMC

数量	質量(kg)
1式	1,760
1式	150
1式	36
2個	26
1式	53
1式	300
1式	50
1式	10
1式	115
合 計	
	数 1 式 式 式 て て て て て て て て て て て て て て て て

*)	外部トリガシステム、フロントエンド処理部、	デーグ	タ処
	理部およびサポートセンサ		

^{**)} HTV非与圧パレットに用いられている構造インタ フェース

項目	数量	質量(kg)
カロリメータ本体	1式	1,760
ミッション部電子回路系	1式	150
PIU	1式	36
FRGF	2個	26
通信制御装置·電源部	1式	53
主構体	1式	168
カーゴ取付機構 ^{**}	1式	50
MLI	1式	10
外部艤装	1式	115
合 計		2,368
システムマージン		132
総計		2,500

構造解析(剛性)

熱解析(温度制御なし)

カロリーメータ部分の温度予測結果FEP / DPC間を高熱結合

低温ケース: 6~12

CALET の温度制御

JEMに標準的に装備されている流体による温度制御の検討

Launching Procedure of CALET

CALET

Launching of H-II Rocket

Separation from H-II

2005年1月7日

CALET

ミッションの現状と展望

- 財団法人日本宇宙フォーラム「宇宙環境利用に関する地上研究公募 宇宙科学フェーズIA」 によって、2期6年間にわたって概念設計、フェーズA相当の開発研究を実施し、JEM曝露部へ のCALET搭載に関する基本的な技術的課題を克服している。 採択テーマ名:
 - 1) 高エネルギー電子、ガンマ線観測装置(CALET)の概念設計 (平成13-15年度)

2)シンチファイバー測定器を用いた高エネルギー宇宙電子、ガンマ線の観測(平成10-12年度)

- 宇宙科学研究所理学委員会による「宇宙科学に関する小型計画の構想募集について」の「国際 宇宙ステーション(ISS)曝露部の科学観測・実験計画」への提案書を、国際研究チームを組織し て準備している。フェーズBへの移行。
- 気球実験による装置実証化、先駆的観測を経て、2010年頃の打ち上げをめざす。このため、ミッション 公募の早期発出を強く期待している。

CALETスケールモデルによる気球観測

気球実験予定

2005年 三陸 実証化テスト 2006年 三陸 観測テスト 2007-2008年 南米ーオーストラリア 先駆的観測 20~100日間

CALETの搭載装置としての予備的 な開発(フェーズA,B)を全て終了 し、プロトタイプによる先駆的な 気球観測を実施する。そして、観 測結果により装置へのフィードバ ックをかけ、観測性能の実証と向 上を行い、次期ミッション公募の 発動を待って、搭載装置の製作、 観測を実施する。

気球実験用のCALETの1/4スケールモデルの側面図。 サイズ IMC: 512 x 512 mm² TASC: 300x 300 mm²

ミッションの現状と展望

- 財団法人日本宇宙フォーラム「宇宙環境利用に関する地上研究公募 宇宙科学フェーズIA」
 によって、2期6年間にわたって概念設計、フェーズA相当の開発研究を実施し、JEM曝露部へのCALET搭載に関する基本的な技術的課題を克服している。
 採択テーマ名:
 - 1) 高エネルギー電子、ガンマ線観測装置(CALET)の概念設計(平成13-15年度)
 2) シンチファイバー測定器を用いた高エネルギー宇宙電子、ガンマ線の観測(平成10-12年度)
- 宇宙科学研究所理学委員会による「宇宙科学に関する小型計画の構想募集について」の「国際 宇宙ステーション(ISS)曝露部の科学観測・実験計画」への提案書を、国際研究チームを組織し て準備している。フェーズBへの移行。
- 気球実験による装置実証化、先駆的観測を経て、2010年頃の打ち上げをめざす。このため、ミッション 公募の早期発出を強く期待している。
- 天文コミュニィテー(国立天文台)が太陽観測ミッションを宇宙研との共同で行うように、宇宙線 コミュニィテー(宇宙線研)も宇宙観測ミッションの検討を!!!

Backup Charts

宇宙線エネルギースペクトル

ALET

System Design

Conceptual System Design of CALET

- System structure definition
- Basic structural concept: Pallet structure
- Estimation of weights and powers of components
- Structural analysis
 - 1st mode eigen value: ~3Hz on JEM-EF (Stiffness Requirement: >2Hz)
 - Generated load on orbit: No harmful loads to JEM-EF
- Thermal analysis
 - From launching to orbital visiting phase, in hot and cold cases with various
 angles
 - No critical temperature ranges to components
- Launch and installation Operation by HTV and RMS

The compatibility of CALET was confirmed as a payload on the JEM Exposed Facility of ISS