

瀧田正人 ICRR

(For Tibet AS collaboration)

CRC宇宙線将来計画シンポジウム

@ICRR 07/01/2005

M. Amenomori ¹, S.Ayabe ², S.W. Cui ³, Danzengluobu ⁴, L.K. Ding ³, X.H. Ding ⁴, C.F. Feng ⁵, Z.Y. Feng ⁶, X.Y. Gao ⁷, Q.X. Geng ⁷, H.W. Guo ⁴, H. He ³, M. He ⁵, K. Hibino ⁸, N. Hotta ⁹, H. Hu ⁴, H.B. Hu ³, J. Huang ¹⁰, Q. Huang ⁶, H.Y.Jia ⁶, F.Kajino ¹¹, K. Kasahara ¹², Y. Katayose ¹³, C.Kato ¹⁸, K.Kawata ¹⁰, Labaciren ⁴, C.L. Lan ³, G.M. Le ¹⁴, J.Y. Li ⁵, H.Lu ³, S.L. Lu ³, X.R. Meng ⁴, K. Mizutani ², J.Mu ⁷, K.Munakata ¹⁸, H. Nanjo ¹, M. Nishizawa ¹⁵, M. Ohnishi ¹⁰, I. Ohta ⁹, H.Onuma ², T. Ouchi ⁸, S. Ozawa ¹⁰, J.R. Ren ³, T. Saito ¹⁶, M. Sakata ¹¹, T. Sasaki ⁸, M. Shibata ¹³, A. Shiomi ¹⁰, T. Shirai ⁸, H. Sugimoto ¹⁷, M. Takita ¹⁰, Y.H. Tan ³, N.Tateyama ⁸, S. Torii ⁸, H. Tsuchiya ¹⁰, S.Udo ¹⁰, T. Utsugi ⁸, B.S. Wang ³, H. Wang ³, X. Wang ², Y.G. Wang ⁵, H.R. Wu ³, L. Xue ⁵, Y. Yamamoto ¹¹, C.T. Yan ³, X.C. Yan ⁷, S.Yasue ¹⁸, Z.H.Ye ¹⁴, G.C.Yu ⁶, A.F. Yuan ⁴, T. Yuda ¹⁰, H.M. Zhang ³, J.L. Zhang ³, N.J. Zhang ⁵, X.Y. Zhang ⁵, and Zhaxisangzhu ⁴ and X.X.Zhou ⁶

- 3 Laboratory of Cosmic Ray and High Energy Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
- 4 Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
- 5 Department of Physics, Shangdong University, Jinan 250100, China
- 6 Institute of Modern Physics, South West Jiaotong University, Chengdu 610031, China
- 7 Department of Physics, Yunnan University, Kunming 650091, China
- 8 Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
- 9 Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan
- 10 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
- 11 Department of Physics, Konan University, Kobe 658-8501, Japan
- 12 Faculty of Systems Engineering, Shibaura Institute of Technology, Saitama 330-8570, Japan
- 13 Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
- 14 Center of Space Science and Application Research, Chinese Academy of Sciences, Beijing 100080, China
- 15 National Institute for Informatics, Tokyo 101-8430, Japan
- 16 Tokyo Metropolitan College of Aeronautical Engineering, Tokyo 116-0003, Japan
- 17 Shonan Institute of Technology, Fujisawa 251-8511, Japan
- 18 Department of Physics, Shinshu University, Matsumoto 390-8621, Japan

¹ Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan

² Department of Physics, Saitama University, Saitama 338-8570, Japan

Our site : Tibet

Yangbajing , Tibet, China 90° 53**E**, 30° 11**N**, 4,300 m a.s.l. (606g/cm²)

ポタラ宮殿 チベット仏教の聖地

納木湖 (ナムツォ) チベット最大級の湖 琵琶湖の3倍!!

大気チェレンコフ望遠鏡と相補的な 広視野(約2sr)連続観測高エネルギー宇宙線望遠鏡

3~100TeVの高エネルギーガンマ線放射天体の 探索、10¹⁴~10¹⁷eVの一次宇宙線の観測から、 宇宙線の起源、加速機構の研究を行う。

太陽活動期における"太陽の影" (太陽による宇宙線の遮蔽効果)を観測し、 太陽近傍および惑星間磁場の大局的構造を知る。

Tibet-I to Tibet-II/HD

0

0

0

0

0

		0	0		0			0			0		0		
	0	0						0					0		0
0	0														0
				2	- 74	- 7		-//	7						
0						2	9	ġ,	5						
					1				7			7;	60	+ "/ /	
0													771		7
														99	4/
0	٥							0			•				•
0	٥		•		₽			-	/		•				•
						IL			\mathcal{D}						
0	0					(_	9	9	\mathcal{O}	•				0
	0	0	•								•		0		0
		0	0		0			0			0		0		

Number of detector 1 : 45 II : 185 HD: 109 Mode Energy I : 10 TeV II : 10 TeV HD: 3 TeV Area I : 7,650 m² II : $37,000 \text{ m}^2$ HD: 5,200 m²

Tibet III (22000m²)

Yangbajing (4300a.s.l.=606g/cm²), Tibet, China

Tibet III (22000m²)

ο

ο

Ο

ο

			0		Ů			Ů		Ů			Ů		Ŭ		
	ο		ο												ο		٥
						_					_						
o	0																ο
	_																
ο																	
	_	_														_	_
0	_	_														_	_
2																	
ο																	
0																	
_	_		_												_		
0	0																0
	ο		ο												ο		ο

0

0

ο

α

Q.

ο

Total 545 detectors Mode Energy ~ 3 TeV **Angular Resolution** ~ 0.9 deg@3TeV Trigger Rate 0 ~680 Hz Data size ~20GB/day Operation 1999 October-**2002 September**

Tibet III (37000m²)

Yangbajing (4300a.s.l.=606g/cm²), Tibet, China

Tibet-III (37000m²)

 $^{\circ}$

6

Ó

Ð,

ń

Ó

ъ

0 σ D _ _ _ _ _ _ _ _ _ _ _ _ _ Ċ. ÷. Ω. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ п п п п п п п п п Ο. . . . ---_ _ п п п Ο. п п п п п п п _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ п п п п Ο. Ο. п п п п п п п п пп **— —** n. Ο. 0 **—** п п п пп п _ _ _ _ _ _ _ _ _ . . Q o

ŕ0

Ď.

 \circ

Total 733 detectors Mode Energy ~3 TeV **Angular Resolution** ~0.9 deg @3TeV **Trigger Rate** ~1500 Hz

Operation November 2002 ~

0

σ

How to point? (Airshower detector) Moon's shadow in Cosmic Rays

Oct. 18

52200

γ from Crab 5.5σ Tibet-HD (5200m²) (1996 Nov-1999 May 502days)

ApJ 525, L93-L96, (1999)

Crab y unpulsed

$\begin{array}{l} \mbox{Flare γ from Mrk421 (2000-2001)$} \\ \mbox{5.1$\sigma$} & \mbox{Tibet-III (22000m^2) 457days} \end{array}$

ApJ 598 (2003) 242-249

Red:99%CL, Blue:90%CL

ApJ, 580, 887-895,2002

T-II 551days, T-III 517days

Northern Sky Survey

(y point source search)

Tibet-HD (5200m²) 556 days + Tibet-III(22000m²) 457 days)

TIBET Hybrid Experiment

How to obtain proton spectrum? 1996-1999 DATA (699days)

EC(γ family)ASBDLocation(x, y)Direction(, ϕ)×Time (t)×Measurement Parameter $E\gamma, N\gamma, < R >, < ER >, sec()$ $Ne \Rightarrow E0$ N_b

Primary proton spectrum (analyses based on Corsika_QGSJET)

(KASCADE data: astro-ph/0312295)

Primary proton spectrum (analyses based on Corsika_SIBYLL)

Primary All - (P+He) component (analyses based on Corsika_QGSJET)

Primary All - (P+He) component (analyses based on Corsika_SIBYLL)

Summary (Draft in preparation)

(1) Steepening of the proton energy spectrum in the knee region is observed. power index= $\sim -3.1 \pm \sim 0.15$ above 500TeV *cf.* Gaisser line (-2.74) (Primary Composition & Interaction Model dependence) = 0.07 < $\sigma_{stat.}$

(2) Comparison with direct measurement suggests the break point of protons exists around a few 100 TeV.
The knee of all particle spectrum (3-5PeV) is
NOT composed of P + He component.

The anisotropy at the solar time frame

CG effect (Nov1999 – Nov2003)

PRL 93, 061101,(2004)

~3x10¹⁰ EV in Total

Some other effects at low energies?

Cosmic Ray Anisotropy at Sidereal Time (Draft in preparation) 1999Nov-2003Nov 918 live days

Sidereal Time Anisotropy

Fourier First Harmonics

Declination Dependence of Amplitude

宇宙線は太陽によって遮蔽される。 正電荷をもった宇宙線は 太陽磁場、惑星間磁場によって 曲げられ、観測される"へこみ"は 磁場の変動によって"移動"する。

太陽活動は11年周期で極大期を迎え、 磁場の変動も活発になる。 この"へこみ"の"移動"を観測すること によって、太陽磁気圏の大局的磁場構造 Field を知ることができる。

Solar Activity – Sunspots (Monthly) Monthly Sunspots 1990-2003

Date

Solar Activity: Sunspot #, SMSMF, IMF

Yearly variation of Sun s shadow (10TeV)

Cycle23 Smoothed Sunspot

Cycle 23 Smoothed Sunspot Numbers: Observed and Predicted

25 Sep 03

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
1994	37	35	34	34	33	31	29	27	27	27	26	26	31
1995	24	23	22	21	19	18	17	15	13	12	11	11	17
1996	10	10	10	9	8*	9	8	8	8	9**	10	10	8
1997	11	11	14	17	18	20	23	25	28	32	35	39	23
1998	44	49	53	57	59	63	65	68	69	71	73	78	62
1999	83	85	84	85	90	93	94	98	102	108	111	111	95
2000	113	117	120	120.8+	119	119	120	119	116	115	113	112	107
2001	109	104	105	108	109	110	112	114	114	114	115	115	111
2002	114	115	113	111	109	106	103	99	95	91	85	82	102
2003	81	79	74	72	69	66	64	62	60	58	57	54	66
				(3)	(5)	(7)	(8)	(10)	(12)	(14)	(16)	(18)	(8)
2004	53	52	51	50	49	47	45	42	41	40	38	37	45
	(19)	(20)	(20)	(21)	(21)	(21)	(21)	(22)	(23)	(24)	(24)	(24)	(22)
	Solar Cy	cle 22			Solar Cy	cle 23			Min, Max,	and Pred	ctions		a

* May 1996 marks Cycle 22's mathematical minimum. ** October 1996 marks the consensus minimum NGDC is now using.

+ April 2000 marks Cycle 23 maximum.

cf. Solar Geophysical Data

Yearly variation of Sun s shadow (10TeV)

Sub-Array (Equivalent Tibet-II) analysis for Tibet-III

Sun s and Moon s shadows by Tibet-III (3TeV)

Full set analysis : 3TeV

Relation between Sun's Shadow and Solar Activity

Normalized Significance of Sun's Shadow

			1996	1997	1998	1999	2000	2001	2002	2003	(_)
		Defisit()	13	16	6	6	4	6	5	7	(5.0E+06)
	10TeV	Event #	4.6E+06	6.6E+06	3.7E+06	6.1E+06	3.4E+06	4.9E+06	4.0E+06	2.7E+06	(/
		Norm()	13.5	14.0	7.0	5.4	4.8	6.1	5.6	9.6	
301		Defisit()					2	6	3	7	(1 5E 07)
	3TeV	Event #					7.7E+06	1.6E+07	1.4E+07	1.9E+07	(1.3 ± 07)
		Norm()					2.7	5.7	3.0	5.9	

Solar Activity Index (Preliminary)

	1996	1997	1998	1999	2000	2001	2002	2003	
sqrt(Sunspot #)	2.8	4.7	8.5	9.9	11.4	10.6	10.5	8.0	Apr. – Sep.
Source Surface MF (µT)	9.0	7.8	18.0	27.1	29.0	19.3	24.1	29.3	6 months
IMF at Earth's orbit (nT)	5.0	5.4	7.0	6.4	7.4	6.8	7.4	7.3	Average
Solar Activity index	1.0	1.2	2.2	2.6	2.9	2.4	2.6	2.5	

Index = Average(Norm(sqrt(sunspot#), Nrom(Source Surface), Norm(IMF)) normalize to the value of 1996

Solar Activity vs. Normalized Sun's Shadow Significance

Physics with Tibet-III (37000m²)

• Primary : All particle 10¹⁶-10¹⁷ eV

(consistency with UHECR) Modulation

- Unknown DC & AC sources

 (~0.5crab/yr@5 for DC)
 Crab multi-10 TeV (IC or ⁰)
 Single Counter Trigger mode
 (sub100GeV GRB with GLAST)
 Long-term AGN Observation
- Sun : Solar Cycle 23, 24!?
- Etc...

What's After Tibet-III

Tibet-III Grants in Aid for Scientific Research: Until March 2005

Next Plan

Higher Density in Tibet-III

Upgrade of Burst Detectors

Cherenkov Detectors?

1. Sub-TeV空気シャワー観測装置

- TeV領域(100 GeV 10 TeV)の宇宙放射 線の広視野(約2Sr)連続観測
- (Whipple 望遠鏡程度の感度 or
- 約0.1Crab/yr程度@5σ)

これまでの広視野地上観測と飛翔体に よる観測の観測エネルギーギャップを 埋める実験

Sub-TeV空気シャワー観測装置の概要

・大型(4m²程度)のプラスチックシンチレータ
 一検出器

- ・Tibet-IIIの中央付近に3.75mの間隔で697台
 - 設置し、全面積は約9200m²
- ・全面積に対する光有感面積の割合
 約30% -> Tibet-IIIの約30倍

- TeV領域のシャワーの到来方向を約1度の
 精度で決定
- ・約2strの広視野で未知の定常的又は時間変 動するガンマ線放射天体の北天探索
- ・ガンマ線バーストや活動銀河核等の他波長 同時観測
- ・銀河面からの超新星起源拡散ガンマ線
- ・銀河ハローからのダークマター起源拡散ガ ンマ線
- ・銀河宇宙線異方性

Solid line: Berezhko&Voelk ApJ 611, 12-19, (2004) Upper B=10µG, Lower B=30µG

2. 空気シャワーコア観測装置

- ・空気シャワーコア観測装置(有効面積約 3000㎡)を現在稼働中のTibet-III中央付 近に設置し連動実験
- ・1,000 TeV以上の鉄等成分:
 - 数万事例 / 3yr
 - 鉄等の重粒子成分に関する観測データは ない(全粒子Knee=鉄等Kneeの検証)
- ・200 TeV以上の陽子・ヘリウム成分: 従来の統計 x10倍以上 /3yr

空気シャワーコア観測装置の概要

・40cm × 50cm × 1cmのプラスチックシン チレーター上に3.5cm(7r.l.)の鉛板を載せた バースト検出器

Tibet-IIIアレイの中心に3.75m間隔で格子 状に213台配置(総面積約3000㎡)

 ・高エネルギー電磁成分(> GeV)が鉛中で 作るカスケードシャワーのサイズ(バース トサイズ)を測定(空気シャワー軸付近のエ ネルギー流を測定) -> 鉄等成分のANNに よる選別

New Core Detector Sensitivitiy (3 yr)

・sub-TeV空気シャワー観測装置及び

R&D 及び建設 2年 観測3年以上

- ・空気シャワーコア観測装置
 R&D 及び建設 3年 観測3年程度
- ・現チベット実験の構成機関を主たる構
 成機関とする予定。
- ・予想予算:約5億円+維持費

できるだけ早期に実現したい!